欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2013年中考100份试卷分类汇编:列方程解应用题(分式方程)(共15页).doc

    • 资源ID:13424887       资源大小:488.50KB        全文页数:15页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2013年中考100份试卷分类汇编:列方程解应用题(分式方程)(共15页).doc

    精选优质文档-倾情为你奉上2013中考全国100份试卷分类汇编列方程解应用题(分式方程)1、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()ABCD考点:由实际问题抽象出分式方程分析:首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程解答:解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程2、(2013铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个设原计划每天生产x个,根据题意可列分式方程为()ABCD考点:由实际问题抽象出分式方程分析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可解答:解:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得:=15,故选:A点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程3、(2013钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天则可列方程为()A+=1B10+8+x=30C+8(+)=1D(1)+x=8考点:由实际问题抽象出分式方程分析:设乙工程队单独完成这项工程需要x天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+(+)×8=1即可解答:解:设乙工程队单独完成这项工程需要x天,由题意得:10×+(+)×8=1故选:C点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量4、(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。已知爸爸比小朱的速度快100米/分,求小朱的速度。若设小朱速度是米/分,则根据题意所列方程正确的是( ) A. B. C. D. 答案:B解析:小朱与爸爸都走了1500601440,小朱速度为x米/ 分,则爸爸速度为(x100)米/ 分,小朱多用时10分钟,可列方程为:5、(2013嘉兴)杭州到北京的铁路长1487千米火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为=3考点:由实际问题抽象出分式方程分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程解答:解:根据题意得:=3;故答案为:=3点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程6、(2013呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产200台机器考点:分式方程的应用分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间解答:解:设:现在平均每天生产x台机器,则原计划可生产(x50)台依题意得:=解得:x=200检验:当x=200时,x(x50)0x=200是原分式方程的解答:现在平均每天生产200台机器故答案为:200点评:此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘7、(2013湘西州)吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度考点:分式方程的应用分析:首先设骑自行车学生的速度是x千米/时,则汽车速度是2x千米/时,由题意可得等量关系;骑自行车学生行驶20千米所用时间汽车行驶20千米所用时间=,根据等量关系,列出方程即可解答:解:设骑自行车学生的速度是x千米/时,由题意得:=,解得:x=20,经检验:x=20是原分式方程的解,答:骑自行车学生的速度是20千米/时点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程要进行检验,这是同学们最容易出错的地方8、(2013安顺)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程求原计划完成这一工程的时间是多少月?考点:分式方程的应用分析:设原来计划完成这一工程的时间为x个月,根据工程问题的数量关系建立方程求出其解即可解答:解:设原来计划完成这一工程的时间为x个月,由题意,得,解得:x=30经检验,x=30是原方程的解答:原计划完成这一工程的时间是30个月点评:本题考查了列分式方程解实际问题的运用,工作总量=工作效率×工作时间的运用,解答时根据工作效率的数量关系建立方程是解答的关键9、(13年北京5分、17)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。若每人每小时绿化面积相同,求每人每小时的绿化面积。解析:10、(13年山东青岛、19)某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等,求第一次的捐款人数解析:设第一次的捐款人数是x人,根据题意得:解得:x=300,经检验x=300是原方程的解,答:第一次的捐款人数是300人11、(2013郴州)乌梅是郴州的特色时令水果乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量考点:分式方程的应用分析:先设小李所进乌梅的数量为xkg,根据前后一共获利750元,列出方程,求出x的值,再进行检验即可解答:解:设小李所进乌梅的数量为xkg,根据题意得:40%150(x150)20%=750,解得:x=200,经检验x=200是原方程的解,答:小李所进乌梅的数量为200kg点评:此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验12、(2013菏泽)(2)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品考点:分式方程的应用专题:工程问题分析:(2)设甲工厂每天能加工x件产品,表示出乙工厂每天加工1.5x件产品,然后根据甲加工产品的时间比乙加工产品的时间多10天列出方程求解即可解答:(2)解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品,根据题意得,=10,解得x=40,经检验,x=40是原方程的解,并且符合题意,15x=1.5×40=60,答:甲、乙两个工厂每天分别能加工40件、60件新产品点评:本题(2)考查了分式方程的应用,找出等量关系为两工厂的工作时间的差为10天是解题的关键13、(2013眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?考点:分式方程的应用;一元一次不等式的应用分析:先设乙工厂每天可加工生产x顶帐蓬,则甲工厂每天可加工生产1.5x顶帐蓬,根据加工生产240顶帐蓬甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可解答:解:设乙工厂每天可加工生产x顶帐蓬,则甲工厂每天可加工生产1.5x顶帐蓬,根据题意得:=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐蓬;设甲工厂加工生产y天,根据题意得:3y+2.4×60,解得:y10,则至少应安排甲工厂加工生产10天点评:此题考查了分式方程的应用和一元一次不等式的应用,读懂题意,找出题目中的数量关系,列出方程和不等式,注意分式方程要检验14、(13年安徽省10分、20)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍费贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出部分能购买25副乒乓球拍。(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用。(2)若购买的两种球拍数一样,求x。15、(2013哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l0天。且甲队单独施工45天和乙队单独施工30天的工作量相同 (1)甲、乙两队单独完成此项任务各需多少天? 、 (2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度。甲队的工作效率提高到原来的2倍。要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?考点:分式方程的应用。一元一次不等式的应用;分析:(1)假设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+10)天,根据:甲队单独施工45天和乙队单独施工30天的工作量相同列方程即可(2)乙队再单独施工a天结合(1)的解和甲队总的工作量不少于乙队的工作量的2倍,可列不等式此题主要考查了分式方程的应用和一元一次不等式的应用,合理地建立等量或不等量关系,列出方程和不等式是解题关键,解答:设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+10)天根据题意得经检验x=20是原方程的解 x+10=30(天)甲队单独完成此项任务需30天乙队单独完成此颊任务需20天(2)解:设甲队再单独施工天 解得3甲队至少再单独施工3天16、(2013绥化)为了迎接“十一”小长假的购物高峰某运动品牌专卖店准备购进甲、乙两种运动鞋其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)mm20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50a70)元出售,乙种运动鞋价格不变那么该专卖店要获得最大利润应如何进货?考点:一次函数的应用;分式方程的应用;一元一次不等式组的应用37分析:(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可解答:解:(1)依题意得,=,整理得,3000(m20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200x)双,根据题意得,解不等式得,x95,解不等式得,x105,所以,不等式组的解集是95x105,x是正整数,10595+1=11,共有11种方案;(3)设总利润为W,则W=(140a)x+80(200x)=(60a)x+16000(95x105),当50a60时,60a0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;当a=60时,60a=0,W=16000,(2)中所有方案获利都一样;当60a70时,60a0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双点评:本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论17、(2013十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同已知甲每分钟比乙每分钟多打5个字问:甲、乙两人每分钟各打多少字?考点:分式方程的应用专题:应用题分析:设乙每分钟打x个字,则甲每分钟打(x+5)个字,再由甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同,可得出方程,解出即可得出答案解答:解:设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得,=,解得:x=45,经检验:x=45是原方程的解答:甲每人每分钟打50个字,乙每分钟打45个字点评:本题考查了分式方程的应用,解答本题的关键是设出未知数,找到等量关系,根据等量关系建立方程,注意不要忘记检验18、(2013咸宁)在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?考点:分式方程的应用分析:设现在平均每天植树x棵,则原计划平均每天植树(x5)棵根据现在植60棵所需的时间与原计划植45棵所需的时间相同建立方程求出其解即可解答:解:设现在平均每天植树x棵,则原计划平均每天植树(x5)棵依题意得:,解得:x=20,经检验,x=20是方程的解,且符合题意答:现在平均每天植树20棵点评:本题是一道工程问题的运用题,考查了工作总量÷工作效率=工作时间的运用,列分式方程解实际问题的运用,解答时根据植60棵所需的时间与原计划植45棵所需的时间相同建立方程是关键19、(2013娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?考点:分式方程的应用;一元一次方程的应用分析:(1)假设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据总工作效率得出等式方程求出即可;(2)分别表示出甲、乙两车单独运每一趟所需费用,再根据关键语句“两车各运12趟可完成,需支付运费4800元”可得方程,再解出方程,再分别计算出利用甲或乙所需费用进行比较即可解答:解:(1)设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据题意得出:+=,解得:x=18,则2x=36,经检验得出:x=18是原方程的解,答:甲车单独运完需18趟,乙车单独运完需36趟;(2)设甲车每一趟的运费是a元,由题意得:12a+12(a200)=4800,解得:a=300,则乙车每一趟的费用是:300200=100(元),单独租用甲车总费用是:18×300=5400(元),单独租用乙车总费用是:36×100=3600(元),36005400,故单独租用一台车,租用乙车合算点评:此题主要考查了分式方程的应用以及一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程20、(2013徐州)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?考点:分式方程的应用分析:设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可解答:解:设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得,解得:x=40,经检验,x=40是原方程的解答:原计划每天种树40棵点评:本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,工作总量÷工作效率=工作时间在实际问题中的运用,解答时根据实际完成的天数比计划少5天为等量关系建立方程是关键21、(2013 德州)某地计划用120180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用专题:应用题分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,自变量的取值范围为:2x3,y=(2x3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=3经检验x=2.5或x=3均为原方程的根,但x=3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式22、(2013烟台)烟台享有“苹果之乡”的美誉甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计)问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算考点:分式方程的应用分析:(1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x的值,再进行检验即可求出答案;(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可解答:解:(1)设苹果进价为每千克x元,根据题意得:400x+10%x(400)=2100,解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分别为10元和5.5元,则乙超市获利600×(5)=1650(元),甲超市获利2100元,甲超市销售方式更合算点评:此题考查了分式方程的应用,关键是读懂题意,找出题目中的等量关系,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,解方程时要注意检验23、(2013遂宁)2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?考点:分式方程的应用分析:设该厂原来每天生产x顶帐篷,提高效率后每天生产1.5x顶帐篷,根据原来的时间比实际多4天建立方程求出其解即可解答:解:设该厂原来每天生产x顶帐篷,提高效率后每天生产1.5x顶帐篷,据题意得:,解得:x=100经检验,x=100是原分式方程的解答:该厂原来每天生产100顶帐篷点评:本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据生产过程中前后的时间关系建立方程是关键24、(2013凉山州)某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变)(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数考点:反比例函数的应用;分式方程的应用分析:(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可解答:解:(1)每天运量×天数=总运量nt=4000n=;(2)设原计划x天完成,根据题意得:解得:x=4经检验:x=4是原方程的根,答:原计划4天完成点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系25、(2013新疆)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?考点:分式方程的应用分析:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,第一次购买用了1200元,第二次购买用了1452元,第一次购水果,第二次购水果,根据第二次购水果数多20千克,可得出方程,解出即可得出答案;(2)先计算两次购水果数量,赚钱情况:卖水果量×(实际售价当次进价),两次合计,就可以回答问题了解答:解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得:=20,解得:x=6,经检验,x=6是原方程的解,(2)第一次购水果1200÷6=200(千克)第二次购水果200+20=220(千克)第一次赚钱为200×(86)=400(元)第二次赚钱为100×(96.6)+120×(9×0.56×1.1)=12(元)所以两次共赚钱40012=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元点评:本题具有一定的综合性,应该把问题分成购买水果这一块,和卖水果这一块,分别考虑,掌握这次活动的流程分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键26、(2013昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?考点:分式方程的应用;一元一次不等式组的应用专题:应用题分析:(1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可;(2)设购买笔记本y件,则购买笔袋(90y)件,根据购买总金额不低于360元,且不超过365元,可得出不等式组,解出即可解答:解:(1)设打折前售价为x,则打折后售价为0.9x,由题意得,+10=,解得:x=4,经检验得:x=4是原方程的根,答:打折前每本笔记本的售价为4元(2)设购买笔记本y件,则购买笔袋(90y)件,由题意得,3604×0.9×y+6×0.9×(90y)365,解得:67y70,x为正整数,x可取68,69,70,故有三种购买方案:方案一:购买笔记本68本,购买笔袋22个;方案二:购买笔记本69本,购买笔袋21个;方案三:购买笔记本70本,购买笔袋20个;点评:本题考查了分式方程的应用、一元一次不等式组的应用,解答此类应用类题目,一定要先仔细审题,有时需要读上几遍,找到解题需要的等量关系或不等关系27、(德阳市2013年)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问: (1)乙队单独做需要多少天才能完成任务? (2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?解析:专心-专注-专业

    注意事项

    本文(2013年中考100份试卷分类汇编:列方程解应用题(分式方程)(共15页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开