欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    系统辨识方法概述(共5页).docx

    • 资源ID:13426345       资源大小:21.26KB        全文页数:5页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    系统辨识方法概述(共5页).docx

    精选优质文档-倾情为你奉上系统辨识方法概述1 系统辨识概述辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,候选数学模型集和辨识准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类µM(即给定一类已知结构的模型),一类输入信号u和等价准则JL(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。2 经典的系统辨识经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法、极大似然法和预报误差法等。其中最小二乘法(LS)是一种经典的和最基本的、也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:时变最小二乘法、广义最小二乘法(GLS)、辅助变量法(IV)、增广最小二乘法(ELS)和多级最小二乘法,以及将一般的最小二乘法与其他方法相结合的方法,例如:最小二乘两步法(CORLS)和随机逼近算法等。随着人类社会的发展进步,越来越多的实际系统很多都是具有不确定性的复杂系统,而对于这类系统,经典的辨识建模方法难以得到令人满意的结果,即就是说,经典的系统辨识方法还存在着一定的不足:a) 利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常干扰保证;b) 极大似然法计算耗费大,可能得到的是损失函数的局部极小值;c) 经典的辨识方法对于某些复杂系统在一些情况下无能为力。3 现代的系统辨识随着智能控制理论研究有不断深入及其在控制领域的广泛应用,从逼近理论和模型研究的发展来看,非线性系统建模已从用线性逼近发展到用非线性模型的阶段。由于非线性系统本身所包含的现象非常复杂,很难推导出能适应各种非线性系统的辨识方法,因此非线性系统的辨识还没有构成一个完整的科学体系。下面简要介绍几种方法。3.1 集员系统辨识法集员辨识是假设在噪声或噪声功率未知但有界的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集。不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒处理及故障检测等方面。在实际应用中,飞行器系统是一个较复杂的非线性系统,噪声统计分布特性难以确定,要较好地描述未知参数和可行解,用统计类的辨识方法飞行器动参数很难达到理想效果。采用集员辨识可解决这种问题。首先用迭代法给出参数的中心估计,然后对参数进行集员估计(即区间估计)这种方法能处理一般非线性系统参数的集员辨识, 已经成功地应用于飞行器动参数的辨识。当系统数学模型精确已知,模型参数具有明显的物理意义或者物理参数具有明确的对应关系时,一般的辨识方法能够快速有效地进行故障检测与隔离。然而实际复杂系统,所建数学模型的未建模动态和统计特性未知噪声的存在,常用的参数辨识方法而不能达到故障检测与隔离的效果,采用集员辨识法则能够达到较好的效果。所给检测方法可快速且有效地传感器故障、参数跳变故障和参数缓弯故障等。该方法具有一定的适用性,其不需要知道数学模型参数的先验信息,未建模动态和未知噪声均可当作有界误差来处理。集员辨识作为系统辨识的一种新方法且给系统辨识带来了巨大的方便。3.2 多层递阶系统辨识法多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。对于一个复杂系统的辨识,多层递阶方法可以利用层数的增加,通过多层的线性模型来描述所考虑的复杂系统,并且将预报模型分成基本结构部分和时变参数部分,然后基于模型等价的原理,分别对每层模型的时变参数进行辨识,直到参数为非时变为止。这种方法的特点是:采用时变参数,能够对实际进行较好的拟合,精确地反映波动特性。从20世纪90年代以来,多层递阶方法的研究引起了广泛的关注,其理论研究取得了长足的迅速发展。该方法也有广泛的应用前景,比如在气象领域、农业病虫害预报和金融系统等应用研究方面已硕果累累。3.3 神经网络系统辨识法人工神经网络是20世纪末迅速发展起来的一门高等技术。其已经在各个领域得到了广泛地应用,尤其是在智能系统中的非线性建模及控制器的设计、模式分类与模式识别、联想记忆和优化计算等方面得到了人们的极大兴趣。由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。在辨识非线性系统时,人们可以根据非线性系统的神经网络辨识结构,利用神经网络所具有的对任意非线性映射的逼近能力来模拟实际系统的输入和输出关系,而且利用人工神经网络的自学习和自适应能力,人们可以方便地给出工程上易于实现的学习算法,且经过学习训练得到系统的正向模型或逆向模型。在神经网络辨识中,神经网络将确定某一非线性映射的问题转化为求解优化问题,而优化过程可根据某种学习算法通过调整网络的权值矩阵来实现,从而产生了一种改进的系统辨识方法。与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:a) 不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;b) 可以对本质非线性系统进行辨识;c) 辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;d) 通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;e) 神经网络也是系统的一个物理实现,可以用在线控制。因此,人工神经网络在非线性系统辨识中的具有很重要的研究价值和广泛的应用前景。3.4 遗传算法系统辨识法遗传算法的基本思想来源一达尔文的进化论和门德尔的遗传学说。该算法借助于计算机的编程,一般是将待求的问题表示成串。即为二进制码或者整数码串,从而构成一群串,并将他们置于问题的求解环境中。根据适者生存的原则,从中选择出适应环境的串进行复制、变异两种基因操作产生出新的一代更加适应环境的串群。经过这样一代代的不断变化,最后收敛于一个最适应环境的串上,即求得问题的最优解。遗传算法不依赖于问题模型本身的特性,以及不容易陷入局部最优和隐含并行性等特点,能够快速有效的搜索复杂、高度非线性和多维空间,为系统辨识的研究与应用开辟一条新的途径。将遗传算法用于线性离散系统的在线辨识,比较好地解决了最小二乘法难以处理的时滞在线辨识和局部优化的缺点。用改进的遗传算法,提出了一种辨识系统参数的方法,还能有效地克服有色噪声的干扰,获得系统参数的无偏估计。简单的遗传算法存在着收敛速度慢、容易陷入局部极值而导致未成熟收敛问题。由遗传算法、进化编码等构成的新的进化计算是近年来发展的很迅速、很有前途的一种优化算法,其借助于生物进化的优胜劣汰的原则,从空间的一群点开始搜索,不断的进化以求得最优解。新的进化计算法还具有较强的鲁棒性,并且不容易陷入局部解,所以人们可以用进化计算来解决系统辨识问题。其主要思想是:用遗传算法操作保证搜索是在整个解空间进行的,同时优化过程不依赖于种群初值的选择,用进化编码操作保证求解过程的平稳性,该方法比分别用遗传算法和进化编码的效果都要好。3.5 模糊逻辑系统辨识法模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。因而,模糊逻辑辨识法深受研究者的青睐。模糊逻辑辨识具有独特的优越性;能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。TS模糊是一种经典的模糊模型,该模糊模型是以局部线性化为基础,通过模糊推理的方法实现了全局的非线性。该模型具有结构上简单、逼近能力强等特点,已经成为模糊逻辑辨识中常用的模型。典型的模糊结构门市部方法有:模糊网格法、自适应模糊格法、模糊聚类法及模糊搜索树法等。其中模糊聚类法是目前最常用的模糊系统结构辨识方法,其中心问题是设定合理的聚类指标,根据该指标所确定的聚类中心可以使模糊输入空间划分最优。另外,还有一些把模糊理论与神经网络、遗传算法等相结合而形成的辨识方法。3.6 小波网络系统辨识法小波网络是大小波分解的基础上提出的一种前馈神经网络,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。小波网络类似于径向基网络,隐层结点的激活函数以小波函数基来代替,输入怪到隐层的权值和阈值分别对应于小波的伸缩参数和平移参数。小波网络与其他前向神经网络一样都具有任意性的逼近非线性函数的能力。小波分析大理论上保证了小波网络大非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。由小波变换的特点决定小波网络基函数具有可调的尺度参数,选用低尺度参数可以学习光滑函数,提高尺度可以较高精度地学习局部奇异函数。网络系数与小波分解有明确的联系,这样有助于大平移参数和尺度参数的物理意义上确定小波函数基的选择,为初始化小波网络系统提供了可能。近十年来,随着小波分析理论的发展与成熟,小波网络作为一种有突出特点的前向神经网络受到越来越多的关注和重视。小波网络具有相对有效和简洁的建模方法,能够构成框架、紧框架,甚至正交基,构造效率高,收敛速度快,并能解决一般的“维数灾”问题,逼近单变量函数的渐进最优逼近器已经被大量应用于系统辨识中。大系统辨识中,尤其大非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。4 结语系统辨识作为建立被控对象数学模型的重要途径之一,近20年来获得了迅速的发展,已成为自动控制理论的一个十分活跃而又重要的分支。从线性现象和线性系统的研究过渡到非线性现象和非线性系统的研究是科学发展的必然结果,这不仅是对科学家们一种新的挑战,而且也是人类社会向更高级形式演化的一种必然。随着智能控制和遗传算法等理论的不断成熟,逐渐形成了形式多样的现代的系统辨识方法,并且已在实际问题应用中取得了较好的使用效果。我们可以预见对不确定性的复杂系统的辨识研究很难或根本不可能找到一种统一的辨识方法来处理,这就需要人们分门别类地去研究,去解决所遇到的各种具体问题。系统辨识未来的发展趋势将是经典系统辨识方法理论的逐步完善,同时随着一些新型学科的产生,有可能形成与之相关的系统辨识方法,使系统辨识成为综合性多学科理论的科学。专心-专注-专业

    注意事项

    本文(系统辨识方法概述(共5页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开