欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    傅里叶变换分析对现代通信技术的重要影响(共2页).doc

    • 资源ID:13430922       资源大小:17KB        全文页数:2页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    傅里叶变换分析对现代通信技术的重要影响(共2页).doc

    精选优质文档-倾情为你奉上傅里叶变换分析对现代通信技术的重要影响一、傅里叶生平让·巴普蒂斯·约瑟夫·傅里叶(法语:Jean Baptiste Joseph Fourier,1768年3月21日1830年5月16日),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论上,傅里叶变换也以他命名。    傅里叶于1768年3月21日在法国约讷省欧塞尔出生。由于很早的时候他的父母就双亡,所以小时候便在天主教本笃会受的教育。毕业后在军队中教授数学,在1795年他到巴黎高等师范教书,之后又在巴黎综合理工学院占一教席。1798年他跟随拿破仑东征,被任命为下埃及的总督。由于英国舰队对法国人进行了封锁,所以他受命在当地生产军火为远征部队提供军火。这个时期,他向开罗埃及学院递交了几篇有关数学的论文。1801年,拿破仑的远征军队远征失败后,他便被任命为伊泽尔省长官。1816年他回到巴黎,六年后他当选了科学院的秘书,并发表了热的分析理论一文,此文建立是在牛顿的热传导理论的速率和温度差成正比的基础上。1830年5月16日他病逝于巴黎,1831年他的遗稿被整理出版成书。二、傅里叶变换傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。快速傅氏变换(FFT)是离散傅氏变换(DFT)的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N2次运算。当N=1024点甚至更多的时候,需要N2=次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2(N/2)2=N+N2/2。继续上面的例子,N=1024时,总的运算次数就变成了次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。三、傅里叶变换在小波分析中的发展历史傅里叶变换只是一种纯频域的分析方法,它在频域内的定位性是完全准确的(即频域分辨率最高),而在时域无任何定位性(或分辨能力),也即傅里叶变换所反映的是整个信号全部时间下的整体频域特征,而不能提供任何局部时间段上的频域信息。 当一个函数用函数展开时,它在时间域的定位性是完全准确的,而在频域却无任何定位性(或分辨率),也即函数分析所反应的只是信号在全部频率上的整体时间特征,而不能提供任何频率所对应的时间特征。 对于一些常见的非平稳的信号,如结构振动信号、地震波、探地信号等等,它们的频域特性都随时间而变化,因此也可称它们为时变信号,分析时通常需要提取某一时间段(或瞬间)的频域信息或某一频率段所对应的时间信息。 短时傅里叶变换(Short Time Fourier Transform,简称STFT,又称为加窗傅里叶变换),但由STFT的定义决定了其窗函数的大小和形状均与时间和频率无关而且保持不变,只适用分析所有特征尺度大致相同的过程,对于分析时变信号是不利的。高频信号一般持续时间很短,而低频信号持续时间较长,因此,人们期望对于高频信号采用小时间窗,对于低频信号则采用大时间窗进行分析。在进行信号分析时,这种变时间窗的要求同STFT的固定时窗(窗不随频率发生变化)的特性是矛盾的,这表明STFT在处理这一类问题时已无能为力了。此外,在进行数值计算时,人们希望将基函数离散化,以节约计算时间及存储量。但Gabor基无论如何离散,都不能构成一组正交基,因而给数值计算带来了不便。这些Gabor变换的不足之处,恰恰是小波变换的特长所在。小波变换不仅继承和发展了STFT的局部化的思想,而且克服了窗口大小不随频率变化、缺乏离散正交的缺点,是一种比较理想的进行信号处理的数学工具。专心-专注-专业

    注意事项

    本文(傅里叶变换分析对现代通信技术的重要影响(共2页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开