欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《计算方法》实验报告(共9页).docx

    • 资源ID:13431701       资源大小:372.13KB        全文页数:9页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《计算方法》实验报告(共9页).docx

    精选优质文档-倾情为你奉上计算方法实验报告学号 姓名班级实验项目名称计算方法实验一、实验名称实验一 插值与拟合二、 实验目的:(1)明确插值多项式和分段插值多项式各自的优缺点;(2)编程实现拉格朗日插值算法,分析实验结果体会高次插值产生的龙格现象;(3)运用牛顿插值方法解决数学问题。三、 实验内容及要求(1) 对于要求选取11个等距插值节点,分别采用拉格朗日插值和分段线性插值,计算x为0.5, 4.5处的函数值并将结果与精确值进行比较。输入:区间长度,n(即n+1个节点),预测点输出:预测点的近似函数值,精确值,及误差(2)已知用牛顿插值公式求的近似值。输入:数据点集,预测点。输出:预测点的近似函数值四、 实验原理及算法描述算法基本原理:(1)拉格朗日插值法(2) 牛顿插值法算法流程五、 程序代码及实验结果(1) 输出:A拉格朗日插值法 B.分段线性插值X y(精确) y(拉格朗日) y(分段线性) 误差(拉) 误差(分)0.0.0.0. -0. 0.4.0.1. 0. -32. -0.(2) 输出:X y(精确) y(牛顿插值) 误差(牛顿插值) 5.000002.2. -0. 源码:(1)A.拉格朗日插值法#include<iostream> #include<string> #include<vector> using namespace std; double Lagrange(int N,vector<double>&X,vector<double>&Y,double x); int main() double p,b,c;char a='n' do cout<<"请输入差值次数n的值:"<<endl; int N; cin>>N; vector<double>X(N,0); vector<double>Y(N,0); cout<<"请输入区间长度(a,b):"<<endl;cin>>p;cin>>b;c=b-p;c=c/(N-1); for(int i=0;i<N;i+)Xi=p; Yi=1/(1+p*p);p=p+c; cout<<"请输入要求值x的值:"<<endl; double x; cin>>x; double result=Lagrange(N,X,Y,x); cout<<"由拉格朗日插值法得出结果: "<<result<<endl; cout<<"是否要继续?(y/n):" cin>>a; while(a='y'); return 0; double Lagrange(int N,vector<double>&X,vector<double>&Y,double x) double result=0; for(int i=0;i<N;i+) double temp=Yi; for(int j=0;j<N;j+) if(i!=j) temp = temp*(x-Xj); temp = temp/(Xi-Xj); result += temp; return result; ; B:分段线性插值#include<iostream> #include<string> #include<vector> using namespace std; double fenduan(int N,vector<double>&X,vector<double>&Y,double x,double c ); int main() double p,b,c;char a='n' do cout<<"请输入差值次数n的值:"<<endl; int N; cin>>N; vector<double>X(N,0); vector<double>Y(N,0); cout<<"请输入区间长度(a,b):"<<endl;cin>>p;cin>>b;c=b-p;c=c/(N-1); for(int i=0;i<N;i+)Xi=p; Yi=1/(1+p*p);p=p+c; cout<<"请输入要求值x的值:"<<endl; double x; cin>>x; double result=fenduan(N,X,Y,x,c); cout<<"由分段线性插值法得出结果: "<<result<<endl; cout<<"是否要继续?(y/n):" cin>>a; while(a='y'); return 0; double fenduan(int N,vector<double>&X,vector<double>&Y,double x,double c) double result=0; int b; b=0; while(x-Xb>c) b=b+1; result=Yb*(1-(x-Xb)/c)+Yb+1*(x-Xb)/c); return result; ;(3) 牛顿插值法#include<iostream> #include<string> #include<vector> using namespace std; double ChaShang(int n,vector<double>&X,vector<double>&Y); double Newton(double x,vector<double>&X,vector<double>&Y); int main() char a='n' do int n; cout<<"请输入插值点个数:"<<endl; cin>>n; vector<double>X(n,0); vector<double>Y(n,0); cout<<"请输入插值点对应的值及函数值(Xi,Yi):"<<endl; for(int i=0;i<n;i+) cin>>Xi>>Yi; cout<<"请输入要求值x的值:"<<endl; double x; cin>>x; cout<<"由牛顿插值法得出结果: "<<Newton(x,X,Y)<<endl; cout<<"是否要继续?(y/n):" cin>>a; while(a='y'); return 0; double ChaShang(int n,vector<double>&X,vector<double>&Y) double f=0; double temp=0; for(int i=0;i<n+1;i+) temp=Yi; for(int j=0;j<n+1;j+) if(i!=j) temp /= (Xi-Xj); f += temp; return f; double Newton(double x,vector<double>&X,vector<double> &Y) double result=0; for(int i=0;i<X.size();i+) double temp=1; double f=ChaShang(i,X,Y); for(int j=0;j<i;j+) temp = temp*(x-Xj); result += f*temp; return result; 六、 实验总结1. 通过实验一数据发现,拉格朗日插值在低次插值时,同源函数偏差并不大,但在高次插值时同原函数偏差大、存在明显的龙格现象,而分段线性插值可以避免出现的龙格现象,与原函数比较吻合,但是分段线性插值由于其分段属性,使得插值函数失去光滑性,可以考虑采用Hermite插值优化。2. 通过实验二计算过程发现,拉格朗日插值法的线性插值的计算过程没有继承性,即增加一个节点时整个计算工作必须重新开始。而牛顿插值则避免了这一问题,这样大量的节省了乘、除法运算次数,减少了计算的时间。因此,对于一些结构相当复杂的函数,牛顿插值法比拉格朗日插值法要占优势。五、教师评语(或成绩) 教师签字 : 专心-专注-专业

    注意事项

    本文(《计算方法》实验报告(共9页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开