欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数的凹凸性在不等式证明中的应用(共7页).doc

    • 资源ID:13439242       资源大小:1,012KB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的凹凸性在不等式证明中的应用(共7页).doc

    精选优质文档-倾情为你奉上学年论文题 目 凹凸函数及其在证明不等式中的应用 学 院 数学与计算机科学学院 专 业 数学与应用数学 级 别 10级 姓 名 洪玉茹 学 号 摘要首先给出了凸函数的定义,接着给出了凸函数的一个判定定理以及Jesen不等式通过例题展示了凸函数在不等式证明中的应用凸函数具有重要的理论研究价值和实际广泛应用,利用凸函数的性质证明不等式;很容易证明不等式的正确性因此,正确理解凸函数的定义、性质及应用,更对有关学术问题进行推广研究起着举足轻重的作用关键词凸函数,凸函数判定定理Jensen不等式。下面我们主要研究凸函数,凹函数由读者自行探索。一、 凸函数的等价定义定义1 若函数对于区间内的任意以及,恒有,则称为区间上的凸函数其几何意义为:凸函数曲线上任意两点间的线总在曲线之上定义2 若函数在区间内连续,对于区间内的任意,恒有,则称为区间上的凸函数其几何意义为:凸函数曲线上任意两点间割线的中点总在曲线上相应点(具有相同横坐标)之上定义3若函数在区间内可微,且对于区间内的任意及,恒有,则称为区间上的凸函数定义4 设在区间I上有定义, 在区间I称为是凸函数当且仅当:,有则称该函数为凸函数。 二、判定定理用定义直接来判断一个函数是不是凸函数,往往是很困难的但用该判定定理来判断一个光滑函数是否为凸函数,则是相当简便的下面我们介绍该判定定理。判定定理:设为区间上的二阶可导函数,则在上为凸函数的充要条件是,证明:对于区间内的任意(不妨设)以及,令,则有,由泰勒公式,得及,其中,于是再进一步由,所以即。所以我们能用判定定理判断函数的凹凸性。定理:(不等式)若为上的凸函数,则 , ,有.证明 应用数学归纳法.当时,由定义1命题显然成立.设时命题成立,则 与都有现设及(i=1,2,k+1),.令i=1,2,k,则.由数学归纳法假设可推得= = 即对任何正整数,上述不等式成立.推论:设在区间I上有定义, 在区间I为是凸函数,则,有。三、凸函数在不等式证明中的应用由上述的Jensen不等式,在实际中我们可以应用Jensen不等式,常常先用导数来肯定函数的凹凸性,再反过来引出它必定满足凸性不等式在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凹凸函数的性质定理来证明可以非常简洁、巧妙Jensen不等式是凸函数的一个重要性质,利用其证明一些重要不等式可以更简捷,但是对于实际给出的题目,我们往往要先构造出凹凸函数,才能应用Jensen不等式证明我们所要证明的不等式。举个我们熟悉的例子:在初等数学中,调和平均值不大于几何平均值,几何平均值不大于算术平均值,算术平均值不大于平方平均值,而证明用到数学归纳法其实这些不等式可在凸函数框架下统一证明例1 设 ,证明: 证明 设 ,有,从而,函数在是严格凸函数, 取 有 或 即 取 同样方法,有 于是, , 有 例2 证明 有 上式称为算术平均不大于 次平均,特别的,当 ,得到算术平均值不大于平方平均值。 证明 考察函数 由于有 所以为凸函数,从而 有 在上式中,令 即得.根据上述的我们常用的不等式的证明过程我们发现要运用凹凸函数证明不等式,首先要构造出凹凸函数,这是运用Jensen不等式的首要前提。下面我们再举出一些凹凸函数在不等式证明当中的应用。例3 在中,求证证明 考虑函数,因为,所以在内是上凸函数,由上凸函数的性质有,由于故例4 设,证明:证明 先将原不等式化为 因为 为上的凸函数,故当时,有 令则 而 所以 这道题目很难用初等知识证明,但通过构造凸函数 巧妙地令,便可很方便的证得.例5 设和 是两组正数, .证明 . 证明 要证原不等式即要证明 . 令,则由于,所以为凹函数,由不等式 即得所证。结束语通过研究凸函数的几种定义,凹凸函数的一个判定定理以及Jesen不等式通过例题展示了凹凸函数在不等式证明中的应用凹凸函数广泛的应用在不等式的证明中,运用它解题显得巧妙,简练,通过对上述问题的证明,我们认识到利用凹凸函数证明不等式,关键是寻找合适的函数,若不能直接找出,则可以对不等式进行适当的变形,从而达到证明不等式的目的 参考文献:1侯风波高等数学M科学出版社,2005,62华东师范大学数学系数学分析M高等教育出版社,1991,33花树忠凸函数的三种典型定义及其间的等价关系J邯郸职业技术学院学报2002(1):52-544李荣春利用凸函数证明不等式J宁德师专学报1998,10(1) 专心-专注-专业

    注意事项

    本文(函数的凹凸性在不等式证明中的应用(共7页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开