数理统计讲义(共52页).doc
精选优质文档-倾情为你奉上数理统计教 案专心-专注-专业第一章 统计量及其抽样分布第一节总体与样本教学目的:要求学生理解数理统计的两个基本概念:总体和样本,以及与这两个基本概念相关的统计基本思想和样本分布。教学重点: 掌握数理统计的基本概念和基本思想.教学难点:掌握数理统计的基本概念和基本思想.一、总体与个体在一个统计问题中,我们把研究对象的全体称为总体,构成总体的每个成员称为个体。对多数实际问题。总体中的个体是一些实在的人或物。比如,我们要研究某大学的学生身高情况,则该大学的全体学生构成问题的总体,而每一个学生即是一个个体。事实上,每个学生有许多特征:性别、年龄、身高、体重、民族、籍贯等。而在该问题中,我们关心的只是该校学生的身高如何,对其他的特征暂不予以考虑。这样,每个学生(个体)所具有的数量指标值身高就是个体,而将所有身高全体看成总体。这样一来,若抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现的机会多,有的出现的机会少,因此用一个概率分布去描述和归纳总体是恰当的。从这个意义上看,总体就是一个分布,而其数量指标就是服从这个分布的随机变量。以后说“从总体中抽样”与“从某分布中抽样”是同一个意思。例1.考察某厂的产品质量,将其产品只分为合格品与不合格品,并以0记合格品,以1记不合格品,则总体该厂生产的全部合格品与不合格品由0或1组成的一堆数。若以p表示这堆数中1的比例(不合格品率),则该总体可由一个二点分布表示:不同的p反映了总体间的差异。例如,两个生产同类产品的工厂的产品总体分布为:我们可以看到,第一个工厂的产品质量优于第二个工厂。实际中,分布中的不合格品率是未知的,如何对之进行估计是统计学要研究的问题。二、样本为了了解总体的分布,我们从总体中随机地抽取n个个体,记其指标值为x1,x2,xn,则x1,x2,xn称为总体的一个样本,n称为样本容量,或简称样本量,样本中的个体称为样品。我们首先指出,样本具有所谓的二重性:一方面,由于样本是从总体中随机抽取的,抽取前无法预知它们的数值,因此,样本是随机变量,用大写字母X1,X2,Xn表示;另一方面,样本在抽取以后经观测就有确定的观测值,因此,样本又是一组数值。此时用小写字母x1,x2,xn表示是恰当的。简单起见,无论是样本还是其观测值,本书中样本一般均用x1,x2,xn表示,读者应能从上下文中加以区别。例2.啤酒厂生产的瓶装啤酒规定净含量为640g,由于随机性,事实上不可能使得所有的啤酒净含量均为640g ,现从某厂生产的啤酒中随机抽取10瓶测定其净含量,得到如下结果: 641635640637642638645643639640这是一个容量为10的样本的观测值。对应的总体为该厂生产的瓶装啤酒的净含量。从总体中抽取样本时,为使样本具有代表性,抽样必须是随机抽样。通常可以用随机数表来实现随机抽样。还要求抽样必须是独立的,即每次的结果互不影响。在概率论中,在有限总体(只有有限个个体的总体)中进行有放回抽样,是独立的随机抽样;然而,若为不放回抽样,则是不独立的抽样。但 当总体容量N很大但样本容量n较小时,不放回抽样可以近似地看做放回抽样,即可近似看做独立随机抽样。下面,我们假定抽样方式总满足独立随机抽样的条件。从总体中抽取样本可以有不同的抽法,为了能由样本对总体做出较可靠的推断,就希望样本能很好地代表总体。这就需要对抽样方法提出一些要求,最常用的 “简单随机抽样”有如下两个要求:(1)样本具有随机性,即要求总体中每一个个体都有同等机会被选入样本,这便意味着每一样品xi与总体X有相同的分布。(2)样本要有独立性,即要求样本中每一样品的取值不影响其他样品的取值,这意味着x1,x2,xn相互独立。用简单随机抽样方法得到的样本称为简单随机样本,也简称样本。除非特别指明,本书中的样本皆为简单随机样本。于是,样本x1,x2,xn可以看成是相互独立的具有同一分布的随机变量,其共同分布即为总体分布。 设总体X具有分布函数F(x), x1,x2,xn为取自该总体的容量为n的样本,则样本联合分布函数为:若总体具有密度函数f(x),则样本的联合密度函数为若总体X为离散型随机变量,则样本的(联合)概率函数为显然,通常说的样本分布是指多维随机变量(x1,x2,xn)的联合分布。例3.为估计一物件的重量,用一架天平重复测量n次,得样本x1,x2,xn,由于是独立重复测量,x1,x2,xn是简单随机样本。总体的分布即x1的分布(x1,x2,xn分布相同)。由于称量误差是均值(期望)为零的正态变量,所以x1可认为服从正态分布N(,2)(X1等于物件重量)加上称量误差,即x1的概率密度为这样,样本分布密度为。 例4.设某种电灯泡的寿命X服从指数分布E(),其概率密度为:则来自这一总体的简单随机样本x1,x2,xn的样本分布密度为例5.考虑电话交换台一小时内的呼唤次数X。求来自这一总体的简单随机样本x1,x2,xn的样本分布。解由概率论知识,X服从泊松分布P(),其概率函数,(其中x是非负整数0,1,2,k,中的一个)。从而,简单随机样本x1,x2,xn的样本分布为:第二节 统计量及其分布教学目的:要求学生理解数理统计的基本概念:统计量,熟练掌握样本均值、样本方差、样本原点矩、样本中心矩等常用统计量的计算公式,掌握次序统计量及其抽样分布。能用R软件来计算这些常用统计量,能用R软件来产生分布的随机数以进行随机模拟。教学重点:样本均值、样本方差、样本原点矩、样本中心矩等常用统计量的求法;次序统计量的抽样分布。教学难点:次序统计量的抽样分布。一、统计量与抽样分布样本来自总体,样本的观测值中含有总体各方面的信息,但这些信息较为分散,有时显得杂乱无章。为将这些分散在样本中有关总体的信息集中起来以反映总体的各种特征,需要对样本进行加工。最常用的加工方法是构造样本的函数,不同的函数反映总体的不同特征。 定义1.设x1,x2,xn为取自某总体的样本,若样本函数TT(x1,x2,xn)中不含有任何未知参数,则称T为统计量。统计量的分布称为抽样分布。按照这一定义,若x1,x2,xn为样本,则,都是统计量,而当,2未知时, 等均不是统计量。二、样本均值及其抽样分布 定义2.设x1,x2,xn为取自某总体的样本,其算术平均值称为样本均值,一般用表示,即。例6.某单位收集到20名青年人某月的娱乐支出费用数据:7984 8488 92 93 94 97 98 99100 101101102102 108110113118125 则该月这20名青年的平均娱乐支出为对于样本均值的抽样分布,我们有下面的定理。 定理1.设x1,x2,xn是来自某个总体X的样本, 为样本均值。(1)若总体分布为N(,2),则的精确分布为;(2)若总体X分布未知(或不是正态分布),且E(X)=,D(X)=2,则当样本容量n较大时,的渐近分布为,这里的渐近分布是指n较大时的近似分布。证明(1)由于为独立正态变量线性组合,故仍服从正态分布。另外, 故 (2)易知为独立、同分布的随机变量之和,且 。由中心极限定理, ,其中(x)为标准正态分布。这表明n较大时的渐近分布为。三、样本方差与样本标准差 定义3.设x1,x2,xn为取自某总体的样本,则它关于样本均值的平均偏差平方和 称为样本方差,其算术根称为样本标准差。相对样本方差而言,样本标准差通常更有实际意义,因为它与样本均值具有相同的度量单位。在上面定义中,n为样本容量,称为偏差平方和,它有3个不同的表达式:事实上,偏差平方和的这3个表达式都可用来计算样本方差。例7.在例6中,我们已经算得,其样本方差与样本标准差为,。方法二 s=11.57 31通常用第二种方法计算s2方便许多。下面的定理给出样本均值的数学期望和方差以及样本方差的数学期望,它不依赖于总体的分布形式。这些结果在后面的讨论中是有用的。 定理2.设总体X具有二阶矩,即E(x)=,D(X)=2<+x1,x2,xn为从该总体得到的样本,和s2分别是样本均值和样本方差,则 此定理表明,样本均值的均值与总体均值相同,而样本均值的方差是总体方差的。证明由于(1)(2)且有: ,而 ,于是 ,两边各除以n-1,即得证。值得读者注意的是:本定理的结论与总体服从什么分布无关。四、样本矩及其函数样本均值和样本方差的更一般的推广是样本矩,这是一类常见的统计量。 定义4.设x1,x2,xn是样本,则统计量称为样本k阶原点矩,特别地,样本一阶原点矩就是样本均值。统计量 称为样本k阶中心矩。常见的是k=2的场合,此时称为二阶样本中心矩。本书中我们将其记为sn2,以区别样本方差S2。 五、极大顺序统计量和极小顺序统计量 定义5.设总体X具有分布函数F(x),分布密度f(x), x1,x2,xn为其样本,我们分别称X(1)=minx1,x2,xn,x(n)=maxx1,x2,xn为极小顺序统计量和极大顺序统计量。定理3.若x(1),x(n)分别为极小、极大顺序统计量,则(1)x(1)的分布函数F1(x)=1-(1-F(x)n,x(1)的分布密度f1(x)=n-(1-F(x)n-1f(x) (2)x(n)的分布函数Fn(x)=F(x)n,x(n)的分布密度fn(x)=nF(x)n-1f(x) 证明 先求出x(1)及x(n)的分布函数F1(x)及Fn(x):,分别对F1(x),Fn(x)求导即得六、正态总体的抽样分布有很多统计推断是基于正态总体的假设的,以标准正态变量为基石而构造的三个著名统计量(其抽样分布分别为x2分布,t分布和F分布)在实践中有着广泛的应用。这是因为这三个统计量不仅有明确背景,而且其抽样分布的密度函数有“明确的表达式”,它们被称为统计中的“三大抽样分布”。1. x2分布(卡方分布) 定义6.设X1,X2,Xn独立同分布于标准正态分布N(0,1),则x2=x12+xn2的分布称为自由度为n的x2分布,记为x2x2(n)。x2(n)分布的密度函数见图1-4当随机变量x2 x2(n)时,对给定的(0<<1),称满足px2>x2(n)= 的x2(n)是自由度为n的开方分布的分位数。分位数x2(n)可以从附表4中查到。例如n=10,=0.05,那么从附表4中查得x2(10)=18.307p(x)2>x20.05(10)=px2>18.307=0.05注:请读者注意x2x2(n)时,n是自由度,不是容量。2.F分布定义7.设x1x2(m),x2x2(n)X1与X2独立,则称的分布是自由度为m与n的F分布,记为FF(m,n),其中m称为分子自由度,n称为分母自由度。自由度为m与n的F分布的密度函数的图像是一个只取非负值的偏态分布(见图6-5)。当随机变量FF(m,n)时,对给定的(0<<1),称满足PF>F(m,n)=的数F(m,n)是自由度为m与n的F分布的分位数。当FF(m,n)时,有下面性质(不证),这说明对小的,分位为F(m,n)可以从附表5中查到,而分位数F1-(m,n)则可通过上式得到。例8.若取m=10,则n=5,=0.05,那么从附表5上(m=n1,n=n2)查得F0.05(10,5)=4.74利用(6.3.8 )式可得到3.t分布 定义8.设随机变量与X1与X2独立且X1N(0,1),X2X2(n),则称的分布为自由度为n的t的分布,记为tt(n).t分布密度函数的图像是一个关于纵轴对称的分布(如下图),与标准正态分布的密度函数形态类似,只是峰比标准正态分布低一些,尾部的概率比标准正态分布的大一些。t分布与N(0,1)的密度函数当随机变量tt(n)时,称满足Pt>t(n)=的t(n)是自由度为n的t分布的分位数,分位数t(n)可以从附表3中查到,例如当n=10, =0.05时,从附表3上查得t0.05(10)=1.8125由于t分布的密度函数关于0对称,故其分位数有如下关系:t1-(n)=- t(n)例如,t0.95(10)=-t0.05(10)=-1.8125当n很大时,(n30),t分布可以用N(0,1)近似P(t>-t)=1-,p(t>t1-)=1-,t1-=-t4.一些重要结论来自一般正态总体的样本均值 和样本方差S2的抽样分布是应用最广的抽样分布,下面我们加以介绍。 定理4.设X1,X2,Xn是来自正态总体N(,2)的样本,其样本均值和样本方差分别为:则有(1)与s2相互独立;(2)特别,若(不证)推论:设,21=22=2并记则(不证)本章小结本章的基本要求:(一)知道总体、样本、简单样本和统计量的概念(二)知道统计量和s2的下列性质:E(s2)=2(三)若x的分布函数为F(x),分布函数为f(x),则样本(x1,x2,xn)的联合分布函数为F(x1)F(x2)F(xn)样本(x1,x2,xn)的联合分布密度为f(x1) f(x2)f(xn),样本(x1,x2,xn)的概率函数,p(x1,x 2 ,xn)=p(X=x1)p(X=x2)p(X=xn)因而顺序统计量x(1),x (n)中X(1)的分布函数为1-(1-F(x)nX(n)的分布函数为F(x)n(四)掌握正态总体的抽样分布若XN(,2)则有(1)(2)(3)(4)若=>当时,。(五)知道样本原点矩与样本中心矩的概念第二章 参数估计从本章开始我们介绍统计推断,所谓统计推断就是由样本推断总体,统计推断包括参数估计和假设检验两部分,它们是统计推断最基本而且是互相有联系的两部分,本章介绍统计推断的第一部分参数估计。参数通常指总体分布中的特征值和和各种分布中的参数,例如二点分布B(1,P)中的p,泊松分布P()中的,正态分布N(、)的、等,习惯用表示参数,通常参数是未知的。参数估计的形式有两类,设x1,x2,xn是来自总体的样本。我们用一个统计量的取值作为参数的估计值,则称为的点估计(量),就是参数的点估计,如果对参数的估计需要对估计作出可靠性判断,就需要对这一可靠性给出可靠性区间或置信区间,叫区间估计。下面首先介绍点估计 第一节 点估计教学目的:要求学生了解参数点估计的基本思想,理解参数点估计的基本概念,熟练运用替换原理、矩法估计和最大似然估计对参数进行估计。教学重点:矩法估计、最大似然估计.教学难点:运用矩法估计、最大似然估计对参数进行估计.直接用来估计未知参数的统计量称为参数的点估计量,简称为点估计,人们可以运用各种方法构造出很多的估计,本节介绍两种最常用的点估计方法。它们是:矩法和极大似然法。一、替换原理和矩法估计用下面公式表示的方法叫矩法例1.对某型号的20辆汽车记录每5L汽油的行驶里程(km),观测数据如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.626.9这是一个容量为20的样本观测值,对应总体是该型号汽车每5L汽油的行驶里程,其分布形式尚不清楚,可用矩法估计其均值,方差,本例中经计算有28.695,0.9185由此给出总体均值,方差的估计分别为即矩法估计的统计思想(替换原理)十分简单明确,众人都能接受,使用场合甚广。例2.设总体为指数分布,其密度函数为x1,xn是样本,由于,亦即,故的矩法估计为例3.设x1,xn是来自服从区间(0,)上的均匀分布的样本,0为未知参数。求的矩估计。解:易知总体X的均值为由矩法的矩估计为比如,若样本值为0.1,0.7,0.2,1,1.9,1.3,1.8,则的估计值2×(0.1+0.7+0.2+1+1.9+1.3+1.8)2例4.在一批产品取样n件,发现其中有m件次品,试用此样本求该批产品的次品率p的矩估计。解:因为例如抽样总数n=100,其中次品m=5.则例5.电话总机在一分钟间隔内接到呼唤次数XP()。观察一分种接到呼唤次数共观察40次,结果如下接到呼唤次数012345观察次数51012832求未知参数的矩估计解:(1)XP()EX=由矩法(2)计算(0×5+1×10+2×12+3×8+4×3+5×2)22二、极大似然估计为了叙述极大似然原理的直观想法,先看例6例6.设有外表完全相同的两个箱子,甲箱中有99个白球和1个黑球,乙箱中有99个黑球和1个白球,现随机地抽取一箱,并从中随机抽取一球,结果取得白球,问这球是从哪一个箱子中取出的? 解:不管是哪一个箱子,从箱子中任取一球都有两个可能的结果:A表示取出白球,B表示取出黑球,如果我们取出的是甲箱,则A发生的概率为0.99,而如果取出的是乙箱,则A发生的概率为0.01,现在一次试验中结果A发生了,人们的第一印象就是:“此白球(A)最像从甲箱取出的”,或者是说,应该认为试验条件对事件A出现有利,从而可以推断这球是从甲箱中取出的,这个推断很符合人们的经验事实,这里“最像”就是“极大似然”之意。本例中假设的数据很极端,一般地,我们可以这样设想,在两个箱子中各有100个球,甲箱中白球的比例是P1,乙箱中白球的比例是P2,已知P1 P2,现随机地抽取一个箱子并从中抽取一球,假定取到的是白球,如果我们要在两个箱子中进行选择,由于甲箱中白球的比例高于乙箱,根据极大似然原理,我们应该推断该球来自甲箱。下面分别给出离散型随机变量和连续型随机变量的极大似然估计求未知参数 的估计 的步骤(一) 离散型随机变量第一步,从总体X取出样本x1,x2,xn第二步,构造似然函数 L(x1,x2,xn,)P(Xx1)P(Xx2)P(Xxn)第三步,计算ln L(x1,x2,xn,)并化简第四步,当时ln L(x1,x2,xn,)取最大值则取常用方法是微积分求最值的方法。(二)连续型随机变量若Xf(x,)第一步从总体X取出样本x1,x2,xn第二步构造似然函数L(x1,x2,xn,)f(x1,)f(x2,)f(xn,)第三步计算ln L(x1,x2,xn,)并化简第四步当时ln L(x1,x2,xn,)取最大值则取常用方法是微积分求最值的方法例7.设总体XB(1,P)即设P(A),从总体X中抽样x1,x2,xn,问最大似然法求解:当XB(1,P)时,应有P(X1)P,P(X0)=1P第一步构造似然函数L(x1,x2,xn,P)P(Xx1)P(Xx2)P(Xxn)第二步计算ln L(x1,x2,xn,P)并化简(x1+xn)lnp+(n-(x1+xn)ln(1-p)第三步求驻点为化简为(x1+xn)(1-p)=pn-(x1+xn)(x1+xn)=np驻点因为只有一个驻点是最大点取例抽样n次A发生m次,则在x1,x2xn中有m个1,其余为0,例8.(1)设总体X服从泊松分布p(),求的极大似然估计;(2)设总体X服从指数分布E(),求的极大似然估计解:(1)XP()p(X=k)=从总体X中取样本x1 ,x2xn。驻点解得的极大似然估计易知的矩估计亦为(2)XE()第一步,从中取样本值x1 ,x2xn,应有x10,x20xn0似然函数L(x1 ,x2xn)f(x1)f(x2)f(xn)=第二步计算第三步求驻点是最大点取在例2中用矩法估计也是同样结果。例9.设,即从中取样x1 ,x2xn,试用最大似然法求解:因为样本x1 ,x2xn已经取出。所以应有0x1,0x2,0xn所以的取值范围为第一步构造似然函数0,很明显,似然函数是的单调减函数,因此当最小时,似然函数 最大,由条件知的最小值为所以时最大。取这一结果与用矩法估计(例73)的结果不同。例10.若,从中抽样x1,x2xn,试用最大似然估计法求:,解:X的似然函数将分别关于两个分量求偏导并令其为0即得到似然方程组,(1),(2)解此方程组,由(1)可得驻点,的极大似然估计为,将之代入(2)给出的极大似然估计第二节 点估计的评价标准教学目的:要求学生了解相合性、无偏性、有效性和均方误差的基本思想,理解相合性、无偏性、有效性和均方误差的基本概念,熟练掌握相合性、无偏性和有效性的判别方法。教学重点:相合估计、无偏估计和有效性。教学难点:如何确定相合估计、无偏估计和有效性。我们已经看到,点估计有各种不同的求法,为了在不同的点估计间进行比较选择,就必须对各种点估计的好坏给出评价标准。数理统计中给出了众多的估计量评价标准,对同一估计量使用不同的评价标准可能会得到完全不同的结论,因此,在评价某一个估计好坏时首先要说明是在哪一个标准下,否则所论好坏毫无意义。但在诸多标准中,有一个基本标准是所有的估计都应该满足的,它是衡量一个估计是否可行的必要条件,这就是估计的相合性,我们就从相合性开始介绍。一、相合性我们知道,点估计是一个统计量,因此它是一个随机变量,在样本量一定的条件下,我们不可能要求完全等同于参数的真实取值,但如果我们有足够的观测值,根据格里纹科定理,随着样本量的不断增大,经验分布函数逼近真实分布函数,因此完全可以要求估计量随着样本量的不断增大而逼近参数真值,这就是相合性,严格定义如下, 定义2.设为未知参数,是的一个估计量,n是样本容量, 若对任何一个,有则称为参数的相合估计相合性被认为是对估计的一个最基本要求,如果一个估计量,在样本量不断增大时,它都不能把被估参数估计到任意指定的精度,那么这个估计是很值得怀疑的,通常,不满足相合性要求的估计一般不予考虑,证明估计的相合性一般可应用大数定律或直接由定义来证。例11.用大数定律证明是的相合估计证:由切比雪夫大数定律即是的相合估计为了避免用定义判断相合性的困难,下面介绍一个判断相合性很有用的定理: 定量:设是的估计量若(1)(2)则是的相合估计。例12.证明是的相合估计证:在前面我们已经证明(1)(2)是的相合估计二、无偏性相合性是大样本下估计量的评价标准,对小样本而言,需要一些其他的评价标准,无偏性便是一个常用的评价标准。 设是的一个估计,的参数空间为,若对任意的,有 则称是的无偏估计,否则称为有偏估计。例13.对任一总体而言,样本均值是总体均值的无偏估计,当总体k阶矩存在时,样本k阶原点矩是总体k阶原点矩的无偏估计,但对k阶中心矩则不一样,例如,二阶样本中心矩就不是总体方差的无偏估计,事实上,对此,有如下两点说明 (1)当样本量趋于无究时,有,我们称为的渐近无偏估计,这表明 当样本量较大时,可近似看作的无偏估计 (2)若对作如下修正: 则是总体方差的无偏估计,这种简章的修正方法在一些场合常被采用,它比更常用,这是因为在n2时,<,因此用估计有偏小的倾向,特别在小样本场合要使用估计。 无偏性不具有不变性。即若是的无偏估计,一般而言,g()不是g()的无 偏估计,除非g()是的线性函数,例如,是的无偏估计,但s不是的无偏估计例14.证明是的无偏估计。其中是X的样本证:特别情形是的无偏估计例15.证明是的无偏估计证三、有效性参数的无偏估计可以有很多,那么如何在无偏估计中进行选择?直观的想法是希望该估计围绕参数真值的波动越小越好,波动的大小可以用方差来衡量,因此人们常用无偏估计的方差的大小作为度量无偏估计优劣的标准,这就是有效性。 定义4.设,是的两个无偏估计,如果对任意的有则称比 有效例16.设x1,xn是取自某总体的样本,记总体均值为,总体方差为,则都是的无偏估计,但显然,只要n1,比有效,这表明,用全部数据的平均估计总体均值要比只使用部分数据更有效。例17.比较与谁有效解:(1)与都是的无偏估计(2) 比有效例18.设,从总体中取样证明是的无偏估计和相合估计解:(1)是的无偏估计是的相合估计第三节 参数的区间估计教学目的:要求学生了解置信区间的基本思想,理解置信区间的基本概念,掌握求置信区间的枢轴量法方法,熟练掌握正态总体参数置信区间的计算公式和大样本置信区间。能用R软件计算正态总体参数的置信区间。教学重点:置信区间的思想、概念和枢轴量法方法,计算正态总体参数的置信区间。教学难点:计算单个正态总体的置信区间以及两个正态总体下的置信区间。用点估计去估计总体的参数,即使是无偏且有效的,也会由于样本的随机性,使得从一个样本x1,x2,x3,xn算得的估计值不一定是被估计的参数的真实值,而且估计值的可靠性并不知道,这是一个重大的问题,因此,必须解决根据估计量的分布,在一定可靠性的程度下指出被估计的总体参数的取值范围,这正是本节要介绍的参数的区间估计问题。一、置信区间概念为了引入置信区间的概念,请看下面的引例。引例设某种绝缘子抗扭强度X服从正态分布 ,其中 未知, 已知(=45公斤·米),试对总体均值作区间估计。对于区间估计,要选择一个合适的统计量,若在该总体取一个容量为n的样本x1,x2,x3,xn,样本均值为的点估计即,然而我们要给出的一个区间估计,以体现出估计的误差,我们知道。在区间估计问题中,要选取一个合适的估计函数。这时,可取,它是的标准化随机变量,且具备下面两个特点:(1)u中包含所要估计的未知参数(其中已知);(2)u的分布为 N(0,1),它与未知参数无关。 因为uN(0,1),因而有,根据uN(0,1)的概率密度的对称性(见下图)可得。当=0.05时,1-=0.095,=1.96,将不等式转化为,亦即,因此有。当=0.05时,。 。说明未知参数包含在区间中的概率是95%,这里,不仅给出了的区间估计,还给出了这一区间估计的置信度(或置信概率)。事实上,当置信度为1-时,区间估计为在引例中,若=160,=40,n=16。则有 说明该绝缘子抗扭强度X的期望在(140.4,179.6)内的可靠度为0.95。下面,引出置信区间的概念。定义5.设为总体的未知参数是由样本定出的两个统计量,若对于给定的概率1-(01),有,则随机区间称为参数的置信度为1-的置信区间,称为置信下限,称为置信上限。置信区间的意义可作如下解释:包含在随机区间中的概率为100(1-)%;或者说,随机区间以100(1-)%的概率包含。粗略地说,当=0.05时,在100次的抽样中,大致有95次包含在中,而其余5次可能不在该区间中。常取的数值为0.05,0.01,此时置信度1-分别为0.95,0.99。置信区间的长度可视为区间估计的精度,下面分析置信度与精度的关系。(1)当置信度1-增大,又样本容量n固定时,置信区间长度增大,即区间估计精度减低;当置信度1-减小,又样本容量n固定,置信区间长度减小,即区间估计精度提高。(2)设置信度1-固定。当样本容量n增大时,置信区间减小(如引例中,置信区间长度为),区间估计精度提高。二、单个正态总体参数的置信区间正态总体是最常见的分布,本小节中我们讨论它的两个参数的置信区间。1.已知时的置信区间设总体X服从正态分布,其中已知,而未知,求的置信度1-的置信区间。这一问题实际上已在引例中的讨论中解决,得到。所以的置信度1-的置信区间为。当=0.05,=1.96;当=0.01,=2.576。 例1.某车间生产滚珠,从长期实践知道,滚珠直径X服从正态分布。从某天产品里随机抽取6个,测得直径为(单位:毫米):14.6,15.1,14.9,14.8,15.2,15.1。若总体方差=0.06,求总体均值的置信区间(=0.05,=0.01)。解,=0.05时,置信度为95%的置信区间为=0.01时,置信度为99%的置信区间为。从此例知,在样本容量n固定时,当置信度1-较大时,置信区间长度较大;当置信度1-较小时,置信区间较小。例2.用天平称量某物体的质量9次,得平均值为=15.4(g),已知天平称量结果为正态分布,其标准差为0.1g,试求该物体质量的0.95置信区间。解 此处1-=0.95,=0.05,查表知u0.025=1.96, 于是该物体质量的0.95的置信区间为,从而该物体质量的0.95置信区间为15.3347,15.4653。例3.设总体为正态分布,为得到的置信水平为0.95的置信区间长度不超过1.2,样本容量应为多大? 解 由题设条件知的0.95置信区间为,其区间长度为,它仅依赖于样本容量n而与样本具体取值无关。现要求,即有。现1-=0.95,故=1.96,从而。即样本容量至少为11时才能使得的置信水平为0.95的置信区间长度不超过1.2。2.未知时的置信区间这时可用t统计量,因为,完全类似于上一小节由于t(n-1)分布的概率密度f(x)的对称性有(见下图)解得 其中是的无偏估计。例4.假设轮胎的寿命服从正态分布。为估计某种轮胎的平均寿命,现随机地抽12只轮胎试用,测得它们的寿命(单位:万千米)如下:4.684.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.70试求平均寿命的0.95置信区间。解 此处正态总体标准差未知,可使用t分布求均值的置信区间。本例中经计算有=4.7092,s2=0.0615。取=0.05,查表知t0.025(11)=2.2010,于是平均寿命的0.95置信区间为(单位:万千米)。3.的置信区间此时虽然也可以就是否已知分两种情况讨论的置信区间,但在实际问题中未知时已知的情况是极为罕见的,所以我们只在未知的条件下讨论的置信区间。设x1,x2,x3,xn为来自总体X的样本,样本方差s2可作为的点估计。由,中包含未知参数,又它的分布与无关,以作为估计函数,可用于的区间估计。由于分布是偏态分布,寻找平均长度最短区间很难实现,一般都改为寻找等尾置信区间:把平分为两部分,在分布两侧各截面积为的部分,即采用的的两个分位数它们满足。(见下图)将上式开方即可得标准差的置信区间。例5.某厂生产的零件质量X服从正态分布。现从该厂生产的零件中抽取9个,测得其质量为(单位:g)45.3 45.4 45.1 45.3 45.5 45.7 45.4 45.3 45.6试求总体标准差的0.95置信区间。解 由数据可算得s2=0.0325,(n-1)s2=8×0.0325=0.26,这里=0.95,查表知代入公式可得的0.95置信区间为。从而的0.95置信区间为0.1218,0.3454。以上关于正态总体参数的区间估计的讨论列表如下表所示。 本章小结本章考核要求:(一)点估计(1)知道点估计的概念(2)会用矩法求总体参数的矩估计值,主要依据是(3)会用最大似然估计法求总体参数的估计值。基本方法是由样本x1,x2,x3,xn构造一个似然函数或似然函数的对数L(x1,x2,x3,xn,)=P(X=x1)P(X=x2)P(X=xn)L(x1,x2,x3,xn,)=f(x1)f(x2)f(xn)然后由ln L(x1,x2,x3,xn,)取最大的值时的值为的值,即 。是L的最大值点。(二)点估计量的评价标准(1)若,则是的无偏估计。(2)若都是的无偏估计,且就说有效。(3)若。