欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    非线性泛函分析试题与答案(共16页).docx

    • 资源ID:13462653       资源大小:5.35MB        全文页数:16页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    非线性泛函分析试题与答案(共16页).docx

    精选优质文档-倾情为你奉上一. 名词解释弱收敛,弱*收敛,强制,Gateaux可微,Frechet可微,紧映射,正则点,临界点,正则值,临界值,映射的Brouwer度,全连续场,全连续场的Leray-Schauder度二. 举例说明无穷维空间中的有界闭集不是紧集。三. 求下列函数在处沿着方向的G-微分四. 证明Poincare不等式:存在常数使得对任意,有五. 设是有界闭集,是上的连续函数,证明积分算子是全连续算子。六. 设是Banach空间,连续,对固定的,关于是局部Lipschitz的,并且Lipschitz常数对在有界区间上一致有界,证明:存在,使得下列初值问题在区间上有唯一解七. 证明Gronwall不等式:设是上的实函数,其中非负且在上Lebesgue可积,在上绝对连续,在上连续,若它们满足则八. 证明Brouwer度的切除性、Kronecker存在性定理、连通区性质、边界值性质、Poincare-Bohl定理、锐角原理、缺方向性质。九. 设连续,关于是局部Lipschitz的,关于是周期的,若存在球使得时,证明下列初值问题存在周期解十. 设是有界闭集,是上的连续函数,并且满足下面的不等式其中,证明下列积分方程有连续解十一. 设定义为证明,其中.一. 名词解释弱收敛:弱*收敛:强制:Gateaux可微:Frechet可微:紧映射:正则点:临界点,正则值,临界值:映射的Brouwer度全连续场全连续场的Leray-Schauder度二. 举例说明无穷维空间中的有界闭集不是紧集。(5页)三. 求下列函数在处沿着方向的G-微分四. 证明Poincare不等式:存在常数使得对任意,有五. 设是有界闭集,是上的连续函数,证明积分算子是全连续算子。(44页) 六. 设是Banach空间,连续,对固定的,关于是局部Lipschitz的,并且Lipschitz常数对在有界区间上一致有界,证明:存在,使得下列初值问题在区间上有唯一解(59页)七. 证明Gronwall不等式:设是上的实函数,其中非负且在上Lebesgue可积,在上绝对连续,在上连续,若它们满足(61页)则八. 证明Brouwer度的切除性、Kronecker存在性定理、连通区性质、边界值性质、Poincare-Bohl定理、锐角原理、缺方向性质。(83页) 九. 设连续,关于是局部Lipschitz的,关于是周期的,若存在球使得时,证明下列初值问题存在周期解(91页)十. 设是有界闭集,是上的连续函数,并且满足下面的不等式其中,证明下列积分方程有连续解十一. 设定义为证明,其中.(春雪给的)专心-专注-专业

    注意事项

    本文(非线性泛函分析试题与答案(共16页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开