函数单调性奇偶性经典练习.docx
精选优质文档-倾情为你奉上函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主.(一)函数单调性的判断函数单调性判断常用方法:例1 证明函数在区间上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行. 解:设且, , 故函数在区间上为减函数.练习1 证明函数在区间上为减函数(定义法)练习2 证明函数在区间上为增函数(定义法、快速判断法)练习3 求函数定义域,并求函数的单调增区间(定义法)练习4 求函数定义域,并求函数的单调减区间(定义法)(二) 函数单调性的应用例1 若函数是定义在上的增函数,且恒成立,求实数的范围。练习1 若函数是定义在上的增函数,且恒成立,求实数的范围练习2 若函数是定义在上的增函数,且恒成立,求实数的范围例2 若函数是定义在上的减函数,且恒成立,求实数的取值范围.练1 若函数是定义在上的减函数,且恒成立,求实数的取值范围.例3 求函数在区间上的最大值.练习1 求函数在区间上的最大值二 、奇偶性题型例1 判断下列函数的奇偶性1) 2)3) 4)解:1)的定义域为R,所以原函数为偶函数。2) 的定义域为即,关于原点对称,又即 ,所以原函数既是奇函数又是偶函数。3)的定义域为 即,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。4)分段函数的定义域为关于原点对称,当时,当时, ,综上所述,在上总有 所以原函数为奇函数。注意:在判断分段函数的奇偶性时,要对x在各个区间上分别讨论,应注意由x的取值范围确定应用相应的函数表达式。练习 判断下列函数的奇偶性 1) 2) 3) 4) 5)例2 设是R上是奇函数,且当时,求在R上的解析式解:当时有,设, 则,从而有 ,是R上是奇函数,所以 ,因此所求函数的解析式为注意:在求函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。练习1已知为奇函数,当时,求的表达式。例3 已知函数且,求的值解:令,则 为奇函数, 练习1 已知函数且,求的值例4 设函数是定义域R上的偶函数,且图像关于对称,已知时,求时的表达式。解:图像关于对称, = 所以时的表达式为=练习1 设函数是定义域R上的偶函数,且恒成立,已知时,求时的表达式例5 定义在R上的偶函数在区间上单调递增,且有求的取值范围。解:,且为偶函数,且在上单调递增,在上为减函数,所以的取值范围是练习1 定义在上的奇函数为减函数,且,求实数a的取值范围练习2 定义在上的偶函数,当时,为减函数,若成立,求m的取值范围.综合练习1.判断函数的奇偶性 2.求下列函数的单调区间(1) ; (2) ; (3)3函数在上是单调递减函数,则的单调递增区间是 4.若函数在区间上是奇函数,则a=( )A.-3或1 B。 3或-1 C 1 D -3 已知函数,则它是( )A 奇函数 B 偶函数 C 即是奇函数又是偶函数 D既不是奇函数又不是偶函数5判断下列函数的奇偶性(1) (2)6.已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则( ). A. B. C. D. 7.已知定义在R上的奇函数满足,则的值为()A. -1 B. 0 C. 1 D. 28.已知函数f(x)=,x1,(1)当a=时利用函数单调性的定义判断其单调性,并求其值域(2)若对任意x1,f(x)0 恒成立,求实数a的取值范围专心-专注-专业