欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    两点之间距离公式教案(共4页).doc

    • 资源ID:13474660       资源大小:156KB        全文页数:4页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    两点之间距离公式教案(共4页).doc

    精选优质文档-倾情为你奉上数学系 09数本四班 夏溦两点之间的距离公式一、教学目标1.知识技能目标:经历探索两点间的距离公式的过程,了解公式的几何背景,熟记两点之间的距离公式,运用两点之间的距离公式,解决相关数学问题。2.过程方法与目标:培养学生严密而准确的数学表达能力;培养学生的观察能力,逻辑推理能力和合作学习能力,使学生明白从特殊推出一般的思想。3.情感态度价值观:通过观察、对比体会数学的对称美和谐美,培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。二、教学重、难点1. 教学重点:两点之间距离公式的推导过程及运用;2. 教学难点:使学生明白推导两点之间距离公式时辅助线的构造,运用勾股定理推导两点之间距离公式,使学生明白如何用特殊推出一般的思想,以及两点之间距离公式灵活运用。三、教学过程(一)复习式导入:回顾上一节课提到的存在两点,若这两点都在X轴或Y轴上,两点之间距离是:(1) 若两点都在X轴上,且已知时,有(2) 若两点都在X轴上,且已知,有XY-x1x2A(-x1,0)B(x2,0) XY-y2x11A(0,y1)B(0,-y2)(二)讲解新课如果已知的两点不是都在坐标轴上的,那我们怎么求两点之间的距离呢?现在,我们来看一个生活中的实例,通过这个例子来尝试推导出两点之间的距离公式。生活实例:同学们都知道中国即将步入3G网络的时代,而且福建省的3G网络铺设已经进入了倒计时。现在有一只工程队要铺设一条网络,连接A,B两城。他们首先要知道两城之间的距离,才能准备材料。他们用全球定位系统将两城的位置在平面直角坐标系中表示出来。现在我们就来试试看能不能帮他们求出A、B两城之间的距离。在黑板上画出A,B两点,如下图:XY(KM)-10-202020A(-20,20)B(20,-10)那么,我们怎么求出AB之间的距离呢?我们来试试看,能不能通过添加一些辅助线,来解答问题呢?首先我们作点A关于X轴的垂线,设垂足为A,再作B关于Y轴的垂线,设垂足为B;延长AA和BB使之交与C点。如下图:XY(KM)-10-202020A(-20,20)B(20,-10)CB显然角C等于90度,这样我们就构造出了一个三角形ABC,而我们要求的AB就在这个直角三角形上。因此我们是不是可以考虑看看用勾股定理来求出呢?由勾股定理可以得知:所以我们现在只要知道和就可以求出。那么我们怎么求出和呢?由和,所以可知。现在我们可以将AB平移到Y轴上,设这两个对应的点为所以:同理将BC平移到X轴上,设对应的点为所以:因此可知:所以现在,我们已经求出了A、B两城的距离。现在,我们来思考一个问题:是不是任意两点,只要知道这两点的坐标,就可以求出这两点之间的距离呢?我们能不能找到一个公式来求两点之间的距离呢?不妨设,。在前面的中因此可以推出即:(三)课堂练习:例:已知点在X轴上求一点,使并求的值。解:设所求点为,于是有由得解得。所以,所求点为,且=。四、课堂小结:今天这节课,我们通过复习旧知识(1)若两点都在X轴上,且已知时,有(2)若两点都在X轴上,且已知,有然后通过解答一个生活中的实例来计算出两点之间的距离,之后用这个解答过程推导出了两点之间的距离公式:若有两点为,则。在这个过程中我们用到了勾股定理,以及用特殊推导出一般的思想。五、板书设计:两点之间的距离公式一、复习:(1)若两点都在X轴上,且已知时,有(2)若两点都在X轴上,且已知,有二、两点之间的距离公式若已知两点坐标为,则。专心-专注-专业

    注意事项

    本文(两点之间距离公式教案(共4页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开