平行线经典四大模型典型例题及练习(共10页).doc
-
资源ID:13497029
资源大小:200.50KB
全文页数:10页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
平行线经典四大模型典型例题及练习(共10页).doc
精选优质文档-倾情为你奉上平行线四大模型 平行线的判定与性质 l、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行 判定方法l: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行,如上图:若已知1=2,则ABCD(同位角相等,两直线平行);若已知1=3,则ABCD(内错角相等,两直线平行);若已知1+ 4= 180°,则ABCD(同旁内角互补,两直线平行)另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行2、 平行线的性质 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质性质1: 两条平行线被第三条直线所截,同位角相等 简称:两直线平行,同位角相等性质2: 两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等性质3: 两条平行线被第三条直线所截,同旁内角互补 简称:两直线平行,同旁内角互补本讲进阶 平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若ABCD,则P+AEP+PFC=3 60°;结论2:若P+AEP+PFC= 360°,则ABCD. 模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若ABCD,则P=AEP+CFP;结论2:若P=AEP+CFP,则ABCD.模型三“臭脚”模型点P在EF右侧,在AB、 CD外部“臭脚”模型结论1:若ABCD,则P=AEP-CFP或P=CFP-AEP;结论2:若P=AEP-CFP或P=CFP-AEP,则ABCD.模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若ABCD,则P=CFP-AEP或P=AEP-CFP;结论2:若P=CFP-AEP或P=AEP-CFP,则ABCD. 巩固练习 平行线四大模型证明(1) 已知AE / CF ,求证P +AEP +PFC = 360° .(2) 已知P=AEP+CFP,求证AECF(3) 已知AECF,求证P=AEP-CFP. (4) 已知 P= CFP -AEP ,求证AE /CF .模块一 平行线四大模型应用例1(1) 如图,ab,M、N分别在a、b上,P为两平行线间一点,那么l+2+3= (2) 如图,ABCD,且A=25°,C=45°,则E的度数是 (3) 如图,已知ABDE,ABC=80°,CDE =140°,则BCD= . (4) 如图,射线ACBD,A= 70°,B= 40°,则P= 练(1) 如图所示,ABCD,E=37°,C= 20°,则EAB的度数为 (2) (七一中学2015-2016七下3月月考) 如图,ABCD,B=30°,O=C则C= .例2如图,已知ABDE,BF、 DF分别平分ABC、CDE,求C、 F的关系.练如图,已知ABDE,FBC=ABF,FDC=FDE. (1) 若n=2,直接写出C、F的关系 ;(2) 若n=3,试探宄C、F的关系;(3) 直接写出C、F的关系 (用含n的等式表示).例3如图,已知ABCD,BE平分ABC,DE平分ADC求证:E= 2 (A+C) .练如图,己知ABDE,BF、DF分别平分ABC、CDE,求C、F的关系.例4如图,3=1+2,求证:A+B+C+D= 180°练(武昌七校 2015-2016 七下期中)如图,ABBC,AE平分BAD交BC于E,AEDE,l+2= 90°,M、N分别是BA、 CD的延长线上的点,EAM和EDN的平分线相交于点 F则F的度数为( )A. 120° B. 135° C. 145° D. 150°模块二 平行线四大模型构造例5如图,直线ABCD,EFA= 30°,FGH= 90°,HMN=30°,CNP= 50°,则GHM= .练如图,直线ABCD,EFG =100°,FGH =140°,则AEF+ CHG= . 例6 已知B =25°,BCD=45°,CDE =30°,E=l0°,求证:ABEF练已知ABEF,求l-2+3+4的度数.(1)如图(l),已知MA1NAn,探索A1、A2、An,B1、B2Bn-1之间的 关系(2)如图(2),己知MA1NA4,探索A1、A2、A3、A4,B1、B2之间的关系(3)如图(3),已知MA1NAn,探索A1、A2、An之间的关系如图所示,两直线ABCD平行,求1+2+3+4+5+6挑战压轴题(粮道街20152016 七下期中)如图1,直线ABCD,P是截线MN上的一点,MN与CD、AB分别交于E、F(1) 若EFB=55°,EDP= 30°,求MPD的度数;(2) 当点P在线段EF上运动时,CPD与ABP的平分线交于Q,问:是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P在线段EF的延长线上运动时,CDP与ABP的平分线交于Q,问的值足否定值,请在图2中将图形补充完整并说明理由第一讲 平行线四大模型(课后作业)1.如图,AB / CD / EF , EHCD于H ,则BAC+ACE +CEH等于( ). A. 180° B. 270° C. 360° D. 450°2(武昌七校2015-2016七下期中) 若ABCD,CDF=CDE,ABF=ABE,则E:F=( ) A2:1 B3:1 C4:3 D3:23.如图3,己知AEBD,1=130°,2=30°,则C= .4.如图,已知直线ABCD,C =115°,A= 25°,则E= 5 如阁所示,ABCD,l=l l0°,2=120°,则= .6 如图所示,ABDF,D =116°,DCB=93°,则B= . 7 如图,将三角尺的直角顶点放在直线a上,ab.1=50°,2 =60°,则3的度数为 .8 如图,ABCD,EPFP, 已知1=30°,2=20°则F的度数为 9.如图,若ABCD, BEF=70°,求B+F+C的度数.10已知,直线ABCD (1)如图l,A、C、AEC之间有什么关系?请说明理由; (2)如图2,AEF、EFC、FCD之间有什么关系?请说明理由; (3)如图3,A、E、F、G、H、O、C之间的关是 . 专心-专注-专业