欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高考物理(电磁综合)压轴大题(共31页).doc

    • 资源ID:13505210       资源大小:8.43MB        全文页数:31页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考物理(电磁综合)压轴大题(共31页).doc

    精选优质文档-倾情为你奉上电磁压轴大题冲刺训练1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E;匀强磁场垂直纸面向里,磁感应强度大小为B。虚线与水平线之间的夹角为45°,一带负电粒子从O点以速度v0水平射入匀强磁场,已知带负电粒子电荷量为q,质量为m,(粒子重力忽略不计)。(1)带电粒子从O点开始到第1次通过虚线时所用的时间;(2)带电粒子第3次通过虚线时,粒子距O点的距离;(3)粒子从O点开始到第4次通过虚线时,所用的时间。2(18分)如图所示的空间分为I、II、III三个区域,边界AD与边界AC的夹角为30°,边界AD与边界EF平行,边界AC与边界MN平行,I区域内存在匀强电场,电场方向垂直于边界AD,II、III区域均存在磁感应强度大小为B的匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,III区域宽度为2d。大量质量为m、电荷量为+q的相同粒子在边界EF上的不同点由静止经电场加速后,到达边界AD时的速度大小均为,然后,沿纸面经边界AD进入II区域磁场。不计粒子的重力,不计粒子间的相互作用力。试问: (1)边界EF与边界AD间的电势差。 (2)边界AD上哪个范围内进入II区域磁场的粒子,都能够进入III区域的磁场? (3)对于能够进入III区域的这些粒子而言,它们通过III区域所用的时间不尽相同,那么通过III区域的最短时间是多少。3.(18分)坐标原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射粒子,粒子的速度大小都是,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小为,其中q和m分别为粒子的电量和质量;在d<x<4d的区域内分布有垂直于xoy平面的匀强磁场。Ab为一块很大的平面感光板,放置于y=4d处,如图所示。观察发现此时恰无粒子打到ab板上。不考虑粒子的重力。求:(1)粒子刚进入磁场时的动能。(2)磁感应强度B的大小。(3)将ab板平移到什么位置时所有的粒子均能打到板上?此时ab板上被粒子打中的区域的长度为多少?4.(22分)如图甲所示,两平行金属板间接有如图乙所示的随时间t变化的电压u,板间电场可看作是均匀的,且两板外无电场,极板长L=0.2m,板间距离d=0.2m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO垂直,磁感应强度B=5×103T,方向垂直纸面向里。现有带正电的粒子流沿两板中线OO连续射入电场中,已知每个粒子的速度v0=105m/s,比荷q/m=108C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。 试求带电粒子射出电场时的最大速度。u/Vt/s-200200O0.20.40.60.8图乙MNOv0图甲 证明任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值。 从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。求粒子在磁场中运动的最长时间和最短时间。5两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示。在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为25,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。6(18分)如图(a)所示,在xOy竖直平面直角坐标系中,有如图(b)所示的随时间变化的电场,电场范围足够大,方向与y轴平行,取竖直向上为正方向;同时也存在如图(c)所示的随时间变化的磁场,磁场分布在x1x0、y1yy1的虚线框内,方向垂直坐标平面,并取向内为正方向。在t=0时刻恰有一质量为m=4×10-5kg、电荷量q:1×10-4C的带正电小球以v0=4ms的初速度从坐标原点沿x轴正向射入场区,并在0.15s时间内做匀速直线运动,g取10m/s2,sin37°=0.60,cos37°=0.80。求: (1)磁感应强度昂的大小; (2)0.3s末小球速度的大小及方向: (3)为确保小球做完整的匀速圆周运动,x1和y1的最小值是多少?7(18分)如图所示,圆形匀强磁场半径R=l cm,磁感应强度B=IT,方向垂直纸面向里,其上方有一对水平放置的平行金属板M、N,间距d=1cm,N板中央开有小孔S。小孔位于圆心0的正上方,S与0的连线交磁场边界于A两金属板通过导线与匝数为100匝的矩形线圈相连(为表示线圈的绕囱,图中只画了2匝),线圈内有垂直纸面向里且均匀增加的磁场,穿过线圈的磁通量变化率为位于磁场边界上某点(图中未画出)的离子源P,在纸面内向磁场区域发射速度大小均为方向各不相同的带正电离子,离子的比荷已知从磁场边界A点射出的离子恰好沿直线As进入M、间的电场(不计离子重力;离子碰到极板将被吸附)求: (1)M、N问场强的大小和方向; (2)离子源P到A点的距离; (3)沿直线AS进入M、N间电场的离子在磁场中运动的总时间(计算时取=3)bdcLaLBF甲8(22分)两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=0.05kg,电阻均为R=1.0,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度随时间变化的图像如图乙所示(在01s和23s内,对应图线为直线。g=10m/s2 )。求:(1)在01s时间内,回路中感应电流I1的大小;(2)在03s时间内,ab杆在水平导轨上运动的最大速度Vm;(3)已知12s内,ab杆做匀加速直线运动,写出12s内拉力F随时间t变化的关系式,并在图丙中画出在03s内,拉力F随时间t变化的图像。(不需要写出计算过程,只需写出表达式和画出图线)9(18分)如图所示,在xOy平面内,第二象限中有匀强电场,方向沿y轴正方向,在第四象限有匀强磁场,方向垂直于xOy平面问外。今有一个质量为m,电量为e的电子(不计重力),从y轴上的P(0,L)点以垂直于y轴、大小为v0的初速度射人电场,经电场偏转后从x轴上的Q(2L,0)点进入磁场,并能返回到出发点P。求: (1)电场强度的大小;(2)磁感应强度的大小;(3)若电场和磁场均不变,要使电子在磁场中经历一段圆弧后从O点射出磁场,则电子仍从P点垂直于y轴射入电场时的初速度应为多大?10(17分)如图(a)所示,在真空中,半径为b的虚线所围的圆形区域内存在匀强磁场,磁场方向与纸面垂直。在磁场右侧有一对平行金属板M和N,两板间距也为b,板长为2b,两板的中心线O1O2与磁场区域的圆心O在同一直线上,O1也是圆周上的一点,两板左端与O1在同一竖直线上。有一电荷为+q、质量为m的带电粒子,以速率v0从圆周上的P点沿垂直于半径OO1并指向圆心O的方向进入磁场,当从O1点飞出磁场时,给M、N板加上如图(b)所示电压u,电后粒子刚好以平行于N板的速度,从N板的边缘飞出。不计平行金属板两端的边缘效应及粒子所受的重力。 (1)求磁场的磁感应强度B; (2)求交变电压的周期T和电压U0的值; (3)若时,将该粒子从MN板右侧沿板的中心线O2O1,仍以速率v0射入M、N之间,求粒子从磁场中射出的点到P点的距离。11(18分)在真空室内,竖直放置的 M、N 板涂有荧光物质,如图所示两板间竖直条形区域存在垂直纸面向里的匀强磁场,区域存在水平向右的匀强电场,磁场和电场均有界,宽度均为 L ,且足够长,磁场的强弱可以调节,电场强度恒为E现有一束质子从 A 处连续不断地射入磁场,入射方向与 M 板成 = 60°夹角且与纸面平行,已知该质子束由两种速度的质子组成,一种速度大小为 v 的低速质子,另一种速度大小为3 v 的高速质子当区域的磁场较强时,M 板出现两个亮斑,缓慢改变磁场强弱,直到两个亮斑相继消失,此时观察到 N 板有两个亮斑已知质子质量为 m,电量为 e,不计质子重力和相互间作用力,求:(1)若保持 M、N 板各有一个亮斑,磁场的磁感应强度应控制在什么范围内;(2)当 M 板亮斑刚好消失, N 板出现两个亮斑时,两个亮斑之间的距离12、(20分)光滑绝缘的长轨道形状如图所示,底部为半圆型,半径R,固定在竖直平面内。A、B是质量都为m的小环,A带电量为2q、B的带电量为+q,用长为R的绝缘轻杆连接在一起,套在轨道上。整个装置放在电场强度为E=mg/3q,方向竖直向上的匀强电场中,将AB两环从图示位置静止释放,A环离开底部2R。不考虑轻杆和轨道的接触,也不考虑A、B间的库仑力作用。求:(1)AB两环都未进入半圆型底部前,杆上的作用力的大小。(2)A环到达最低点时,两球速度大小。(3)若将杆换成长 ,A环仍从离开底部2R处静止释放,经过半圆型底部再次上升后离开底部的最大高度 。 来源:13、(16分)如图所示为研究电子枪中电子在电场中运动的简化模型示意图在xOy平面的第一象限,存在以x轴、y轴及双曲线y的一段(0xL,0yL)为边界的匀强电场区域;在第二象限存在以xL、x2L、y0、yL的匀强电场区域.两个电场大小均为E,不计电子所受重力,电子的电荷量为e,求:(1)从电场区域的边界B点处由静止释放电子,电子离开MNPQ时的坐标;(2)由电场区域的AB曲线边界由静止释放电子离开MNPQ的最小动能;14(18分)如图所示,质量为m带电量为+q的带电粒子(不计重力),从左极板处由静止开始经电压为U的加速电场加速后,经小孔O1进入宽为L的场区,再经宽为L的无场区打到荧光屏上。O2是荧光屏的中心,连线O1O2与荧光屏垂直。第一次在宽为L整个区域加入电场强度大小为E、方向垂直O1O2竖直向下的匀强电场;第二次在宽为L区域加入宽度均为L的匀强磁场,磁感应强度大小相同、方向垂直纸面且相反。两种情况下带电粒子打到荧光屏的同一点。求:(1)带电粒子刚出小孔O1时的速度大小; (2)加匀强电场时,带电粒子打到荧光屏上的点到O2的距离d; (3)左右两部分磁场的方向和磁感应强度B的大小。 15(14分)BEV0xPOy如图所示,在平面直角坐标系的第一象限,直线OP与x轴正向的夹角,OP与y轴之间存在垂直于坐标平面向外的,磁感应强度大小为B的匀强磁场,OP与x轴之间有方向沿x轴负方向的匀强电场,一质量为m,电荷量为q的带正电粒子(重力不计),从原点O沿y轴正方向以速度V0射入磁场,从x轴上某处沿与x轴负向成角的方向离开第一象限,求:(1)粒子的运动轨迹与OP的交点坐标(2)电场强度的大小(3)粒子在第一象限内运动的时间(4)若在第四象限中加一垂直坐标平面,磁感应强度为2B的正三角形磁场,使粒子能再次经过坐标原点O且与y轴正向夹角为进入第二象限,试计算所加磁场的最小边长16(18分)如图所示,在直角坐标系的原点O处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。在放射源右侧有一很薄的挡板,垂直于x轴放置,挡板与xoy平面交线的两端M、N正好与原点O构成等边三角形,为挡板与x轴的交点。在整个空间中,有垂直于xoy平面向外的匀强磁场(图中未画出),带电粒子在磁场中沿顺时针方向做匀速圆周运动。已知带电粒子的质量为m,带电荷量大小为q,速度大小为,MN的长度为L。(不计带电粒子的重力及粒子间的相互作用)(1)确定带电粒子的电性;(2)要使带电粒子不打在挡板上,求磁感应强度的最小值;(3)要使MN的右侧都有粒子打到,求磁感应强度的最大值。(计算过程中,要求画出各临界状态的轨迹图)17 (18分)如图,POy区域内有沿y轴正方向的匀强电场,POx区域内有垂直纸面向里的匀强磁场,OP与x轴成角不计重力的负电荷,质量为m、电量为q,从y轴上某点以初速度v0垂直电场方向进入,经电场偏转后垂直OP进入磁场,又垂直x轴离开磁场求:(1)电荷进入磁场时的速度大小(2)电场力对电荷做的功(3)电场强度E与磁感应强度B的比值18. (16分)如图所示,C、D为平行正对的两金属板,在D板右方一边长为l6.0 cm的正方形区域内存在匀强磁场,该区域恰好在一对平行且正对的金属板M、N之间,M、N两板均接地,距板的右端L12.0 cm处放置一观察屏在C、D两板间加上如图乙所示的交变电压,并从C板O处以每秒1 000个的频率均匀的源源不断地释放出电子,所有电子的初动能均为Ek0120 eV,初速度方向均沿OO直线,通过电场的电子从M、N的正中间垂直射入磁场已知电子的质量为m9.0×1031 kg,磁感应强度为B6.0×104 T问:(1) 电子从D板上小孔O点射出时,速度的最大值是多大?(2) 电子到达观察屏(观察屏足够大)上的范围有多大?(3) 在uCD变化的一个周期内,有多少个电子能到达观察屏?19 (16分)如图所示,线圈焊接车间的水平传送带不停地传送边长为L,质量为m,电阻为R的正方形线圈,传送带始终以恒定速度v匀速运动在传送带的左端将线圈无初速地放到传送带上,经过一段时间,线圈达到与传送带相同的速度,已知当一个线圈刚好开始匀速运动时,下一个线圈恰好放到传送带上,线圈匀速运动时,相邻两个线圈的间隔为L,线圈均以速度v通过一磁感应强度为B、方向竖直向上的匀强磁场,匀强磁场的宽度为3L.求:(1) 每个线圈通过磁场区域产生的热量Q;2) 电动机对传送带做功的功率P?(3) 要实现上述传送过程,磁感应强度B的大小应满足什么条件?(用题中的m、R、L、v表示)20. (18分)如图所示,匀强电场区域和匀强磁场区域是紧邻的且宽度相等均为d,电场方向在纸面内竖直向下,而磁场方向垂直纸面向里。一质量为m,电量为q的正电粒子 (重力不计) ,从O点以速度V0沿垂直电场方向进入电场,从A点射出电场进入磁场,离开电场时带电粒子在电场方向的偏转位移为电场宽度的一半,粒子从磁场右边界上C点水平穿出,求:(1) 粒子进入磁场时的速度V为多少?(2) 电场强度E和磁感应强度B的大小。电磁大题压轴答案1.(18分)解:如图所示:(1)根据题意可得粒子运动轨迹如图所示。(2分)因为=45°,根据几何关系,带电粒子从O运动到A为3/4圆周(1分)则带电粒子在磁场中运动时间为:(1分)(2)由qvB=m(2分)得带电粒子在磁场中运动半径为:,(1分)带电粒子从O运动到A为3/4圆周,解得(1分)带电粒子从第2次通过虚线到第3次通过虚线运动轨迹为圆周,所以粒子距O点的距离(1分)(3)粒子从A点进入电场,受到电场力F=qE,则在电场中从A到B匀减速,再从B到A匀加速进入磁场。在电场中加速度大小为:(1分)从A到B的时间与从B到A的时间相等。(1分)带电粒子从A到C:(1分)带电粒子从C点再次进入电场中做类平抛运动X=v0t4(1分)(1分)由几何关系得:Y=X(1分)得(1分)第4次到达虚线的总时间为(2分)321.(16分)在如图所示xoy坐标系第一象限的三角形区域(坐标如图中所标注)内有垂直于纸面向外的匀强磁场,在x 轴下方有沿y方向的匀强电场,电场强度为E。将一个质量为m、带电量为+q的粒子(重力不计)从P(a,0)点由静止释放。由于x轴上存在一种特殊物质,使粒子每经过一次x轴后速度大小变为穿过前的倍。(1)欲使粒子能够再次经过x轴,磁场的磁感应强度B0最小是多少?(2)在磁感应强度等于第(1)问中B0的情况下,求粒子在磁场中的运动时间;(3)若磁场的磁感应强度变为第(1)问中B0的2倍,求粒子运动的总路程。4(22分)(1)设两板间电压为U1时,带电粒子刚好从极板边缘射出电场,则有 (2分) 代入数据解得U1=100V (1分)在电压低于100V时,带电粒子才能从两板间射出,电压高于100V时,带电粒子打在极板上,不能从两板间射出。粒子刚好从极板边缘射出电场时,速度最大,设最大速度为v1,则有 (3分)代入数据解得 (1分)(2)设粒子进入磁场时速度方向与OO'的夹角为,则速度大小 (2分)粒子在磁场中做圆周运动的轨道半径 (2分)粒子从磁场中飞出的位置与进入磁场的位置之间的距离 (2分)代入数据解得s=0.4m (1分)s与无关,即射出电场的任何一个带电粒子进入磁场的入射点与出射点间距离恒为定值。(3)粒子飞出电场进入磁场,在磁场中按逆时针方向做匀速圆周运动。粒子飞出电场时的速度方向与OO'的最大夹角为 ,=45° (2分)当粒子从下板边缘飞出电场再进入磁场时,在磁场中运动时间最长, (3分)当粒子从上板边缘飞出电场再进入磁场时,在磁场中运动时间最短, (3分)5 解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a ;对于 x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c 由对称性得到 c在 x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足解得 由数学关系得到:代入数据得到:所以在x 轴上的范围是6解:小球运动轨迹参见图解。 (1)设t1=0.15s,在t1时间内,小球处于平衡状态,故有: (2分)解得B0=2T (2分) (2)设,在t1t2时间内,由图(b)、图(c)可知,小球在电场力和重力作用下,做类平抛运动,t2时刻小球在x方向的速度为: 在y方向,根据牛顿第二定律有: 由 解得 (2分) 根据运动学公式 (1分) 根据平行四边形定则,此时粒子的速度为: (1分) 设速度方向与x轴成 得 (1分) (3)由图(b)、图(c)可知,0.3s以后,粒子所受电场力与重力平衡,粒子在洛仑兹力作用下做匀速圆周运动,由牛顿第二定律 解得 (1分) 由几何知识可得粒子做匀速圆周运动的圆心坐标为 (3分) (3分) 所以 (1分) (11) (1分)78(22分)解:(1)在01s时间内,cd杆向下做匀加速运动,由乙图可知: (1)式 (1分)对cd杆进行受力分析,根据牛顿第二定律有mgf1NBI1La1在竖直方向上: (2)式 (1分)在水平方向上: (3)式 (2分)由(2)和(3)式可得: (4)式 (2分)(2)在23s时间内,cd杆向下做匀减速运动时,由乙图可知: (5)式 (2分)对cd杆进行受力分析,根据牛顿第二定律有mgf3NBI3La3在竖直方向上: (6)式 (2分)在水平方向上: (7)式 由(6)和(7)式可得: (2分)所以电动势 (8)式 (1分)又因为 所以ab杆的最大速度为: (9)式 (1分)(3)解法提示:mgf2NBI2La2F在01.0s内,ab杆做匀速运动 (1分)在2.03.0s内,ab杆做匀速运动 (1分)在12s内,ab杆做匀加速运动,加速度为 (1分)对ab杆分析,根据牛顿第二定律有: (1s<t<2s)所以表达式为(1s<t<2s) (10)式(2分) 当t=1s时拉力为 当t=2s时拉力为 在03.0s内,拉力F随时间t变化的图像见图(3分)910(17分)(1)粒子自P进入磁场,从O1点水平飞出磁场,运动的半径必为b (1分) 由 (2分)解得 (1分)由左手定则可知,磁场方向垂直纸面向外。 (1分) (2)粒子自O1点进入电场,最后恰好从N板的边缘平行飞出,设运动时间为t,则 (1分) (2分) (2分) (1分) 解得 (1分) (1分) (3)当t=T/2粒子以速度v0沿O2O1射入电场时,则该粒子恰好从M板边缘以平行于极板的速度射入磁场,且进入磁场的速度仍为v0,运动的轨道半径仍为b。 (2分)设进入磁场的点为Q,离开磁场的点为R,圆心为O3,如图所示,四边形OQO3R是菱形,故OR/QO3,所以P、O、R三点共线,即POR为圆的直径。即PR间的距离为2b。 (2分)11(18分)参考解答:(1)M、N板各有一个亮斑,高速质子打在N板上,低速质子打在M板上B最大时,高速质子速度恰好与两场交界相切且与电场方向垂直,在磁场中运动半径为R1,则有解得 B最小时,低速质子速度恰好与两场交界相切且与电场方向垂直,在磁场中运动半径为R2,则有 解得 磁感应强度的取值范围为:(2)恰好出现两个亮斑时,低速质子速度恰好与两场交界相切且与电场方向垂直,在磁场中运动半径为R2,高速质子半径 ,轨迹如图所示由几何关系知此时高速质子沿电场线方向进入电场,到达N板时与A点得竖直高度差为低速质子在磁场中偏转距离为 设在电场中运动时间为,则有 在电场中偏转的距离为 解以上各式得 评分标准:(1)问8分,(2)问10分共18分12、(1).05mg。 (2) VA=VB= (3) 13、解析(1)设电子的质量为m,电子在电场中做匀加速直线运动,出区域时的速度为v0,接着在无电场区域匀速运动,此后进入电场,在电场中做类平抛运动,假设电子从NP边射出,出射点纵坐标为y1,由y对于B点yL,则xL所以,eE·Lmv解得v0设在电场中运动的时间为t1Ly1at·()2解得y10,所以原假设成立,即电子离开MNPQ区域的位置坐标为(2L,0)(2)设释放点在电场区域中的坐标为(x,y),在电场中电子被加速,速度为v1时飞离电场,接着在无电场区域做匀速运动,然后进入电场做类平抛运动,并从NP边离开,运动时间为t2,偏转位移为y2.eExmv y2at·()2解得xy2L2/4,所以原假设成立,即在电场区域的AB曲线边界由静止释放的所有电子离开MNPQ时都从P点离开的其中只有从x=y点释放的电子,离开P点时动能最小,则从B到P由动能定理得:eE·(xy)Ek0所以EkeEL 答案(1)(2L,0)(2) eEL14.解 (1)带电粒子在加速电场中加速过程,由动能定理得; 2分解得: 1分(2)带电粒子在偏转电场中,设运动时间为t,加速度为a,平行电场的分速度为vy,侧移距离为y。由牛顿第二定律得:qE = ma 1分由运动学公式得:L = v0t 1分 vy = at 1分由得: 1分带电粒子从离开电场到打到荧光屏上的过程中,设运动时间为t,侧移距离为y由运动学公式得:= v0t 1分由得:y = vy t 1分由得带电粒子打到荧光屏上的点到O2的距离:d = y + y = 1分(3)磁场的方向如图所示,左半部分垂直纸面向外,右半部分垂直纸面向里。 1分带电粒子运动轨迹与场区中心线交于N点,经N点做场区左边界的垂线交于M点,经N点做过N点速度的垂线交场区左边界于O点,O点就是带电粒子在左半区域磁场中做圆周运动的圆心。带电粒子在两部分磁场中的运动对称,出磁场的速度与荧光屏垂直,所以O1M = 。(意思明确即可) 2分设带电粒子做圆周运动的半径为R,由几何关系得: 2分由牛顿第二定律得: 1分由v0、d的结论和式解得:B = ()(未代入原始数据不得分) 2分15 解由几何关系知,从O到A为1/4圆周,从A到C速度匀减速到0,再反向加速到A,从A经3/4圆周到D,后垂直电场方向进入电场,做类平抛运动,由几何关系知粒子运动与OP的交点坐标为:16. (18分)解:(1)由左手定则可得,粒子带正电荷。 (2分)(2)设磁感应强度大小为B,带电粒子运动的轨迹半径为r,带电粒子做圆周运动的向心力由洛仑兹力提供,有: 得 (2分)由于从O点射出的粒子的速度大小都相同,由上式可知,所有粒子的轨迹半径都相等。由几何知识可知,为使粒子不打在挡板上,轨迹的半径最大时,带电粒子在O点沿y轴正方向射出,其轨迹刚好与MN相切,如图甲所示。(2分)则最大半径 (2分)由上式可得,磁感应强度的最小值 (2分)(3)为使MN的右侧都有粒子打到,打在N点的粒子最小半径的轨迹为图乙中的圆弧OMN。 (2分) 图中点O3为轨迹的圆心,由于内接OMN为正三角形,由几何知识,最小的轨迹半径为 (3分)粒子做匀速圆周运动的向心力由洛仑兹力提供,有 所以,磁感应强度的最大值 (3分)17(18分)解:(1)设A、B相碰前A的速度大小为v,由动能定理:代入数据解得:m/s(2)设A、B相碰后A、B的速度大小分别为vA、vB。A、B相碰,动量守恒:设A、B相碰后到停止运动所通过的位移分别为sA、sB。由动能定理:对A:对B:(此步用匀变速直线运动的规律求解也可)依题意:m联立解得:vA=5m/s,vB=8m/sA、 B碰撞过程中的能量损失:联立得:J(评分说明:每式2分)36(18分)解:(1)设带电粒子到达OP进入磁场前的瞬时速度为v,有:(2)由动能定理,电场力做的功为:(2)设带电粒子在磁场中运动的半径为R,由牛顿运动定律:依题意: 有几何关系:有: 又: 在y方向: 联立可得: (评分说明:每式2分)18. (16分)(1) UCD200 V时,粒子获得最大速度vmax(1分)由动能定理eUCDmvmv(2分)(2) 最大半径Rmax10 cm(1分)sin1yminRmax(1cos1)Ltan111 cm(2分)最小半径应满足Rl2(1分) Rmin7.5 cm,sin2ymaxLtan219 cm(2分) yymaxymin8 cm(1分)(3) Rmin(1分)eUAB1mvEk0(2分) UAB160 V(1分) n×2 0001 400个(1分)19. (16分)(1) 每个线圈穿过磁场过程中有电流的运动距离为2L,t穿(2分)EBLv(1分)P(1分)产生热量QP·t穿·解得Q(1分)(2) 每个线圈从投放到相对传送带静止,运动的距离是一样的设投放时间间隔为T,则vt图如图所示可得2Lv·T(1分)va·T(1分)传送带做加速运动fmgma(1分)在T时间内,传送带位移为s传v·T,线圈位移为s线·T摩擦产生的热为Q摩擦mg·s相对mg··T(2分)线圈中焦耳热Q焦耳·T有P·TQ摩擦mv2Q焦耳(1分)代入以上各式,得P(1分)(3) 为保持线圈通过磁场过程中不产生滑动,安培力必须不超过滑动摩擦力应有BILmg(2分)代入(2)中有关各式,得B(2分)20.解:解:(1)粒子在电场偏转垂直电场方向 (2分)平行电场方向 (2分)解得Vy=V0 (1分)到达A点的速度为 (1分)进入磁场时速度方向与水平方向成(1分)(2)在电场中Vy=at F=qE 解得 在磁场中粒子做匀速圆周运动,如图所示,由图得圆周运动半径 OxyEPP1O1OO1图甲M21(16分)设粒子到O点时的速度为v0,由动能定理有 解得(1分)粒子经过O点后,速度为v1,(1分)如图甲所示,粒子进入磁场后的轨迹圆与磁场边界相切时,磁感应强度最小为B0。设粒子轨道半径为R1,有(1分)由得 (2分)如图甲,粒子经O1点进入电场区域做匀减速运动,后又加速返回,再次进入磁场时的速率(1分)OxyEPP1O1图乙P2O2此时粒子做圆周运动的半径(1分)其运动轨迹如图甲所示,此后不再进入磁场。由几何关系可知,则粒子在磁场中运动的时间为(3分)若B=2B0,粒子的运动情况如图乙所示,粒子经过O点第一次进入磁场时的速率仍为v1,在磁场中做圆周运动的半径记为,由第问可知,(1分)粒子从O1点穿过x轴进入电场时速率为,运动到P1点后返回,则由动能定理 解得 (1分)当粒子第二次进入磁场时的速率做圆周运动的半径为(1分)粒子从O2点穿过x轴进入电场时速率为,运动到P2点后返回,则由动能定理 解得 (1分)依此类推可知,当粒子第n次进入磁场时,其在磁场中做圆周运动的轨道半径为,再进入电场中前进的距离(1分)因此,粒子运动的总路程为 =(1分)专心-专注-专业

    注意事项

    本文(高考物理(电磁综合)压轴大题(共31页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开