欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    计量经济学实验报告-多重共线性检验(共8页).doc

    • 资源ID:13505662       资源大小:269KB        全文页数:8页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计量经济学实验报告-多重共线性检验(共8页).doc

    精选优质文档-倾情为你奉上计量经济学上机实验报告多重共线性检验实验背景近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。 为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。 模型 其中, Yt第t年全国旅游收入 X2国内旅游人数(万人) X3城镇居民人均旅游支出 (元) X4农村居民人均旅游支出 (元) X5公路里程(万公里) X6铁路里程(万公里)Y = 0.*X2 + 0.*X3 + 5.*X4 - 3.*X5 - 53.*X6 - 2220.数据来源中国统计局网站样本区间 19942009实验过程及结果(一)实证结果Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 15:49Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  X20.0.8.0.0000X30.1.0.0.8768X45.1.2.0.0204X5-3.2.-1.0.1886X6-53.38584434.6829-0.0.9047C-2220.1512210.044-1.0.3388R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression252.1678    Akaike info criterion14.17806Sum squared resid.0    Schwarz criterion14.46778Log likelihood-107.4245    F-statistic347.2644Durbin-Watson stat1.    Prob(F-statistic)0.R2很高,F显著,但x3、x5、x6不显著,X5、X6的符号甚至是负的。可能存在多重共线性(二)检查各解释变量之间的相关性X2X3X4X5X6X2 1. 0. 0. 0. 0.X3 0. 1. 0. 0. 0.X4 0. 0. 1. 0. 0.X5 0. 0. 0. 1. 0.X6 0. 0. 0. 0. 1.各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。(三)进一步检验和消除多重共线性,采用逐步回归法分别作Y对X2、X3、X4、X5、X6的一元回归,结果如下:变量x2x3x4x5x6参数估计值0.17.7860328.7987124.211453751.241t统计量27.922416.4.10.8558812.83403R-squared0.982360.0.0.0.按R-squared大小排序为:X2、X6、X5、X3、X4以X2为基础,分别加入X3、X4、X5、X6加入X3,不显著,排除。Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:11Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-3012.810549.3740-5.0.0001X20.0.14.959910.0000X32.1.2.0.0555R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression335.2951    Akaike info criterion14.63526Sum squared resid.    Schwarz criterion14.78012Log likelihood-114.0821    F-statistic487.3775Durbin-Watson stat0.    Prob(F-statistic)0.加入X4,显著,保留Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2360.596180.9037-13.048910.0000X20.0.27.598450.0000X45.1.4.0.0006R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression242.2577    Akaike info criterion13.98524Sum squared resid.5    Schwarz criterion14.13010Log likelihood-108.8819    F-statistic939.5591Durbin-Watson stat0.    Prob(F-statistic)0.加入X5,不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2052.457252.8897-8.0.0000X20.0.8.0.0000X5-4.3.-1.0.2549R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression368.5792    Akaike info criterion14.82455Sum squared resid.    Schwarz criterion14.96941Log likelihood-115.5964    F-statistic402.2068Durbin-Watson stat0.    Prob(F-statistic)0.加入X6,显著,保留Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-6813.6822061.836-3.0.0057X20.0.8.0.0000X6867.2159365.80032.0.0339R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression324.3425    Akaike info criterion14.56884Sum squared resid.    Schwarz criterion14.71370Log likelihood-113.5507    F-statistic521.2956Durbin-Watson stat0.    Prob(F-statistic)0.保留了X4和X6分别以X2和X4为基础,加入其他变量加入X3不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:35Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2323.426462.3572-5.0.0003X20.0.20.013290.0000X45.1.3.0.0061X3-0.1.-0.0.9313R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression252.0685    Akaike info criterion14.10960Sum squared resid.3    Schwarz criterion14.30274Log likelihood-108.8768    F-statistic578.5661Durbin-Watson stat0.    Prob(F-statistic)0.加入X5不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:37Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2432.172178.3609-13.636240.0000X20.0.11.558080.0000X45.1.4.0.0006X5-3.2.-1.0.1508R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression230.5411    Akaike info criterion13.93105Sum squared resid.2    Schwarz criterion14.12420Log likelihood-107.4484    F-statistic692.4432Durbin-Watson stat1.    Prob(F-statistic)0.加入X6不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:25Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2291.5332172.352-1.0.3123X20.0.10.999930.0000X45.1.3.0.0095X6-12.85589402.8593-0.0.9751R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression252.1391    Akaike info criterion14.11016Sum squared resid.7    Schwarz criterion14.30330Log likelihood-108.8813    F-statistic578.2396Durbin-Watson stat0.    Prob(F-statistic)0.以X2、X6为基础,加入其他变量加入X3 ,不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:38Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-5877.5502399.623-2.0.0306X20.0.8.0.0000X6606.4675495.01671.0.2440X31.1.0.0.4416R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression329.0154    Akaike info criterion14.64240Sum squared resid.    Schwarz criterion14.83555Log likelihood-113.1392    F-statistic337.9400Durbin-Watson stat0.    Prob(F-statistic)0.加入X4不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:38Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2291.5332172.352-1.0.3123X20.0.10.999930.0000X6-12.85589402.8593-0.0.9751X45.1.3.0.0095R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression252.1391    Akaike info criterion14.11016Sum squared resid.7    Schwarz criterion14.30330Log likelihood-108.8813    F-statistic578.2396Durbin-Watson stat0.    Prob(F-statistic)0.加入X5不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:39Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-6722.3952029.031-3.0.0062X20.0.6.0.0000X6835.0915360.72052.0.0391X5-3.2.-1.0.2529R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression318.9580    Akaike info criterion14.58031Sum squared resid.    Schwarz criterion14.77346Log likelihood-112.6425    F-statistic359.8440Durbin-Watson stat0.    Prob(F-statistic)0.最后证实结果X2和X4Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-2360.596180.9037-13.048910.0000X20.0.27.598450.0000X45.1.4.0.0006R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression242.2577    Akaike info criterion13.98524Sum squared resid.5    Schwarz criterion14.13010Log likelihood-108.8819    F-statistic939.5591Durbin-Watson stat0.    Prob(F-statistic)0.X2和X6Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.  C-6813.6822061.836-3.0.0057X20.0.8.0.0000X6867.2159365.80032.0.0339R-squared0.    Mean dependent var4270.119Adjusted R-squared0.    S.D. dependent var2720.860S.E. of regression324.3425    Akaike info criterion14.56884Sum squared resid.    Schwarz criterion14.71370Log likelihood-113.5507    F-statistic521.2956Durbin-Watson stat0.    Prob(F-statistic)0.结果分析:在其他因素不变的情况下,当国内旅游人数X2增加1万人和农村人均旅游支出增加1元,国内旅游收入将分别0.056亿元和增长5.45亿元。在其他因素不变的情况下,作为旅游设施的代表,铁路里程X6 每增加1万公里时, 国内旅游收入将增长867.21亿元。专心-专注-专业

    注意事项

    本文(计量经济学实验报告-多重共线性检验(共8页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开