计量经济学实验报告-多重共线性检验(共8页).doc
-
资源ID:13505662
资源大小:269KB
全文页数:8页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
计量经济学实验报告-多重共线性检验(共8页).doc
精选优质文档-倾情为你奉上计量经济学上机实验报告多重共线性检验实验背景近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。 为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。 模型 其中, Yt第t年全国旅游收入 X2国内旅游人数(万人) X3城镇居民人均旅游支出 (元) X4农村居民人均旅游支出 (元) X5公路里程(万公里) X6铁路里程(万公里)Y = 0.*X2 + 0.*X3 + 5.*X4 - 3.*X5 - 53.*X6 - 2220.数据来源中国统计局网站样本区间 19942009实验过程及结果(一)实证结果Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 15:49Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. X20.0.8.0.0000X30.1.0.0.8768X45.1.2.0.0204X5-3.2.-1.0.1886X6-53.38584434.6829-0.0.9047C-2220.1512210.044-1.0.3388R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression252.1678 Akaike info criterion14.17806Sum squared resid.0 Schwarz criterion14.46778Log likelihood-107.4245 F-statistic347.2644Durbin-Watson stat1. Prob(F-statistic)0.R2很高,F显著,但x3、x5、x6不显著,X5、X6的符号甚至是负的。可能存在多重共线性(二)检查各解释变量之间的相关性X2X3X4X5X6X2 1. 0. 0. 0. 0.X3 0. 1. 0. 0. 0.X4 0. 0. 1. 0. 0.X5 0. 0. 0. 1. 0.X6 0. 0. 0. 0. 1.各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。(三)进一步检验和消除多重共线性,采用逐步回归法分别作Y对X2、X3、X4、X5、X6的一元回归,结果如下:变量x2x3x4x5x6参数估计值0.17.7860328.7987124.211453751.241t统计量27.922416.4.10.8558812.83403R-squared0.982360.0.0.0.按R-squared大小排序为:X2、X6、X5、X3、X4以X2为基础,分别加入X3、X4、X5、X6加入X3,不显著,排除。Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:11Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-3012.810549.3740-5.0.0001X20.0.14.959910.0000X32.1.2.0.0555R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression335.2951 Akaike info criterion14.63526Sum squared resid. Schwarz criterion14.78012Log likelihood-114.0821 F-statistic487.3775Durbin-Watson stat0. Prob(F-statistic)0.加入X4,显著,保留Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2360.596180.9037-13.048910.0000X20.0.27.598450.0000X45.1.4.0.0006R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression242.2577 Akaike info criterion13.98524Sum squared resid.5 Schwarz criterion14.13010Log likelihood-108.8819 F-statistic939.5591Durbin-Watson stat0. Prob(F-statistic)0.加入X5,不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2052.457252.8897-8.0.0000X20.0.8.0.0000X5-4.3.-1.0.2549R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression368.5792 Akaike info criterion14.82455Sum squared resid. Schwarz criterion14.96941Log likelihood-115.5964 F-statistic402.2068Durbin-Watson stat0. Prob(F-statistic)0.加入X6,显著,保留Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-6813.6822061.836-3.0.0057X20.0.8.0.0000X6867.2159365.80032.0.0339R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression324.3425 Akaike info criterion14.56884Sum squared resid. Schwarz criterion14.71370Log likelihood-113.5507 F-statistic521.2956Durbin-Watson stat0. Prob(F-statistic)0.保留了X4和X6分别以X2和X4为基础,加入其他变量加入X3不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:35Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2323.426462.3572-5.0.0003X20.0.20.013290.0000X45.1.3.0.0061X3-0.1.-0.0.9313R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression252.0685 Akaike info criterion14.10960Sum squared resid.3 Schwarz criterion14.30274Log likelihood-108.8768 F-statistic578.5661Durbin-Watson stat0. Prob(F-statistic)0.加入X5不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:37Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2432.172178.3609-13.636240.0000X20.0.11.558080.0000X45.1.4.0.0006X5-3.2.-1.0.1508R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression230.5411 Akaike info criterion13.93105Sum squared resid.2 Schwarz criterion14.12420Log likelihood-107.4484 F-statistic692.4432Durbin-Watson stat1. Prob(F-statistic)0.加入X6不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:25Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2291.5332172.352-1.0.3123X20.0.10.999930.0000X45.1.3.0.0095X6-12.85589402.8593-0.0.9751R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression252.1391 Akaike info criterion14.11016Sum squared resid.7 Schwarz criterion14.30330Log likelihood-108.8813 F-statistic578.2396Durbin-Watson stat0. Prob(F-statistic)0.以X2、X6为基础,加入其他变量加入X3 ,不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:38Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-5877.5502399.623-2.0.0306X20.0.8.0.0000X6606.4675495.01671.0.2440X31.1.0.0.4416R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression329.0154 Akaike info criterion14.64240Sum squared resid. Schwarz criterion14.83555Log likelihood-113.1392 F-statistic337.9400Durbin-Watson stat0. Prob(F-statistic)0.加入X4不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:38Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2291.5332172.352-1.0.3123X20.0.10.999930.0000X6-12.85589402.8593-0.0.9751X45.1.3.0.0095R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression252.1391 Akaike info criterion14.11016Sum squared resid.7 Schwarz criterion14.30330Log likelihood-108.8813 F-statistic578.2396Durbin-Watson stat0. Prob(F-statistic)0.加入X5不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:39Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-6722.3952029.031-3.0.0062X20.0.6.0.0000X6835.0915360.72052.0.0391X5-3.2.-1.0.2529R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression318.9580 Akaike info criterion14.58031Sum squared resid. Schwarz criterion14.77346Log likelihood-112.6425 F-statistic359.8440Durbin-Watson stat0. Prob(F-statistic)0.最后证实结果X2和X4Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-2360.596180.9037-13.048910.0000X20.0.27.598450.0000X45.1.4.0.0006R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression242.2577 Akaike info criterion13.98524Sum squared resid.5 Schwarz criterion14.13010Log likelihood-108.8819 F-statistic939.5591Durbin-Watson stat0. Prob(F-statistic)0.X2和X6Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb. C-6813.6822061.836-3.0.0057X20.0.8.0.0000X6867.2159365.80032.0.0339R-squared0. Mean dependent var4270.119Adjusted R-squared0. S.D. dependent var2720.860S.E. of regression324.3425 Akaike info criterion14.56884Sum squared resid. Schwarz criterion14.71370Log likelihood-113.5507 F-statistic521.2956Durbin-Watson stat0. Prob(F-statistic)0.结果分析:在其他因素不变的情况下,当国内旅游人数X2增加1万人和农村人均旅游支出增加1元,国内旅游收入将分别0.056亿元和增长5.45亿元。在其他因素不变的情况下,作为旅游设施的代表,铁路里程X6 每增加1万公里时, 国内旅游收入将增长867.21亿元。专心-专注-专业