欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学《等差数列的前n项和(一)》教案(共5页).doc

    • 资源ID:13513147       资源大小:278.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学《等差数列的前n项和(一)》教案(共5页).doc

    精选优质文档-倾情为你奉上课 题:3.3 等差数列的前n项和(一)教学目的:1掌握等差数列前n项和公式及其获取思路 2会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题 教学重点:等差数列n项和公式的理解、推导及应教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:    本节是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它求和解决数列和的最值问题等差数列求和公式的推导,采用了倒序相加法,思路的获得得益于等到差数列任意的第k项与倒数第k项的和都等于首项与末项的和这一性质的认识和发现通过对等差数列求和公式的推导,使学生能掌握“倒序相加”数学方法教学过程:一、复习引入:首先回忆一下前几节课所学主要内容:1等差数列的定义: =d ,(n2,nN)2等差数列的通项公式: (或=pn+q (p、q是常数)3几种计算公差d的方法: d= d= d=4等差中项:成等差数列5等差数列的性质: m+n=p+q (m, n, p, q N )6数列的前n项和:数列中,称为数列的前n项和,记为.“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10算得不亦乐乎时,高斯站起来回答说:“1+2+3+100=5050教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;50+51=101,所以101×50=5050” 这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法 二、讲解新课: 如图,一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V形架上共放着多少支铅笔?这是一堆放铅笔的V形架,这形同前面所接触过的堆放钢管的示意图,看到此图,大家都会很快捷地找到每一层的铅笔数与层数的关系,而且可以用一个式子来表示这种关系,利用它便可以求出每一层的铅笔数.那么,这个V形架上共放着多少支铅笔呢?这个问题又该如何解决呢?经过分析,我们不难看出,这是一个等差数求和问题?这个问题,它也类似于刚才我们所遇到的“小故事”问题,它可以看成是求等差数列1,2,3,n,的前120项的和.在上面的求解中,我们发现所求的和可用首项、末项及项数n来表示,且任意的第k项与倒数第k项的和都等于首项与末项的和,这就启发我们如何去求一般等差数列的前n项的和.如果我们可归纳出一计算式,那么上述问题便可迎刃而解.1等差数列的前项和公式1:证明: +: 由此得: 从而我们可以验证高斯十岁时计算上述问题的正确性 2 等差数列的前项和公式2: 用上述公式要求必须具备三个条件: 但 代入公式1即得: 此公式要求必须已知三个条件: (有时比较有用)总之:两个公式都表明要求必须已知中三个公式二又可化成式子:,当d0,是一个常数项为零的二次式三、例题讲解例1 一个堆放铅笔的V型的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V形架上共放着多少支铅笔?解:由题意可知,这个V形架上共放着120层铅笔,且自下而上各层的铅笔成等差数列,记为,其中,根据等差数列前n项和的公式,得答:V形架上共放着7260支铅笔例2 等差数列-10,-6,-2,2,前多少项的和是54?解:设题中的等差数列为,前n项为则 由公式可得解之得:(舍去)等差数列-10,-6,-2,2前9项的和是54例3 .已知等差数列中=13且=,那么n取何值时,取最大值.解法1:设公差为d,由=得:3×13+3×2d/2=11×13+11×10d/2d= -2, =13-2(n-1), =15-2n,由即得:6.5n7.5,所以n=7时,取最大值.解法2:由解1得d= -2,又a1=13所以 = - n+14 n = -(n-7)+49当n=7,取最大值对等差数列前项和的最值问题有两种方法:(1) 利用:当>0,d<0,前n项和有最大值可由0,且0,求得n的值当<0,d>0,前n项和有最小值可由0,且0,求得n的值(2) 利用:由利用二次函数配方法求得最值时n的值四、练习:1求集合的元素个数,并求这些元素的和 解:由得 正整数共有14个即中共有14个元素 即:7,14,21,98 是 答:略 2. 已知一个等差数列的前10项的和是310,前20项的和是1220, 求其前项和的公式. 解:由题设: 得: 五、小结 本节课学习了以下内容:1.等差数列的前项和公式1: 2.等差数列的前项和公式2: 3.,当d0,是一个常数项为零的二次式4.对等差数列前项和的最值问题有两种方法:(3) 利用:当>0,d<0,前n项和有最大值可由0,且0,求得n的值当<0,d>0,前n项和有最小值可由0,且0,求得n的值(4) 利用:二次函数配方法求得最值时n的值六、课后作业:已知等差数列的前项和为,前项和为,求前项和解:由题设 而七、板书设计(略)八、课后记:专心-专注-专业

    注意事项

    本文(高中数学《等差数列的前n项和(一)》教案(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开