欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    直线与圆-韦达定理(共28页).docx

    • 资源ID:13521605       资源大小:1.01MB        全文页数:28页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    直线与圆-韦达定理(共28页).docx

    精选优质文档-倾情为你奉上1圆,直线,过的动直线与直线m相交于,与圆相交于两点,是中点. ()与垂直时,求证:过圆心;()当时,求直线的方程;()设,试问是否为定值2以原点为圆心的圆与直线相切()求圆的方程;()若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由3圆,直线(1) 求证:对,直线与圆总有两个不同的交点A、B;(2) 求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;(3) 若定点P(1,1)满足,求直线的方程。4圆经过点A(2,0),B(0,2),且圆心在直线yx上,又直线l:ykx1与圆相交于P、Q两点(1)求圆的方程;(2)若,求实数k的值;(3)过点作动直线交圆于,两点试问:在以为直径的所有圆中,是否存在这样的圆,使得圆经过点5如图,圆:()若圆与轴相切,求圆的方程;()已知,圆与轴相交于两点(点在点的左侧)过点任作一条直线与圆:相交于两点问:是否存在实数,使得?6(14分) 已知方程.(1)若此方程表示圆,求的取值范围;(2)若(1)中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求的值;(3)在(2)的条件下,求以MN为直径的圆的方程.7圆,直线,直线与圆交于两点,点的坐标为,且满足(1)当时,求的值; (2)当时,求的取值范围8圆C:,直线与圆C交于P、Q两个不同的点,M为P、Q的中点()已知,若,求实数的值;()求点M的轨迹方程;()若直线与的交点为N,求证:为定值9圆:,直线.(1)直线l与圆交于不同的两点,当时,求;(2)若,是直线l上的动点,过作圆的两条切线、,切点为、,探究:直线是否过定点;(3)若、为圆:的两条相互垂直的弦,垂足为,求的面积的最大值.10已知圆:,直线与圆相交于,两点()若直线过点,且,求直线的方程;()若直线的斜率为,且以弦为直径的圆经过原点,求直线的方程11已知圆过坐标原点O且圆心在曲线上.()若圆M分别与轴、轴交于点、(不同于原点O),求证:的面积为定值;()设直线与圆M 交于不同的两点C,D,且,求圆M的方程;()设直线与()中所求圆M交于点、, 为直线上的动点,直线,与圆M的另一个交点分别为,求证:直线过定点.12圆C的圆心在坐标原点,与直线相切.(1)求直线被圆C所截得的弦AB的长;(2)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程;(3)若与直线垂直的直线不过点R(1,-1),且与圆C交于不同的两点P,Q.若PRQ为钝角,求直线的纵截距的范围13(本小题满分12分) 已知圆,点,直线.(1) 求与圆相切,且与直线垂直的直线方程;(2) 在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.14如图,圆与坐标轴交于点.求与直线垂直的圆的切线方程;设点是圆上任意一点(不在坐标轴上),直线交轴于点,直线交直线于点,若点坐标为,求弦的长;求证:为定值.专心-专注-专业参考答案1()详见解析 () 或 () 是定值-5【解析】试题分析:() 当与垂直时斜率相乘为,从而得到斜率及方程()直线与圆相交时常用弦长的一半,圆心到直线的距离,圆的半径构成的直角三角形求解()先将直线设出,与圆联立求出点坐标,将直线与直线联立求得,代入中化简得常数,求解时需注意直线方程分斜率存在不存在两种情况试题解析:()由已知 ,故,所以直线的方程为. 将圆心代入方程易知过圆心 4分() 当直线与轴垂直时,易知符合题意; 当直线与轴不垂直时,设直线的方程为,由于, 所以由,解得. 故直线的方程为或 -8分()当与轴垂直时,易得,又则 ,故. 即 当的斜率存在时,设直线的方程为,代入圆的方程得 .则 ,即, .又由得, 则. 故. 综上,的值为定值,且 12分另解一:连结,延长交于点,由()知.又于, 故.于是有. 由得 故 另解二:连结并延长交直线于点,连结由()知又, 所以四点都在以为直径的圆上,由相交弦定理得 考点:1.直线方程;2.直线与圆相交的位置关系;3.向量的坐标运算2();()存在点,使得.【解析】试题分析:()设圆的半径为,因为直线与圆相切,所以 ,即可求出圆的方程为 .()方法一:因为直线:与圆相交于,两点, 所以 , 所以或 ,假设存在点,使得,因为,在圆上,且,同时由向量加法的平行四边形法则可知,四边形为菱形,所以与互相垂直且平分,所以原点到直线:的距离为 10分即 ,解得, ,经验证满足条件,所以存在点,使得 ;方法二:假设存在点,使得记与交于点,因为,在圆上,且,由向量加法的平行四边形法则可知四边形为菱形,因为直线斜率为,显然,所以直线方程为, 解得, 所以点坐标为,因为点在圆上,所以,解得,即,经验证满足条件,所以存在点,使得.试题解析:解:()设圆的半径为,因为直线与圆相切,所以 3分所以圆的方程为 5分()方法一:因为直线:与圆相交于,两点, 所以 , 所以或 7分假设存在点,使得 8分因为,在圆上,且,同时由向量加法的平行四边形法则可知四边形为菱形,所以与互相垂直且平分 9分所以原点到直线:的距离为 10分即 ,解得, ,经验证满足条件 12分所以存在点,使得 13分方法二:假设存在点,使得记与交于点 因为,在圆上,且,由向量加法的平行四边形法则可知四边形为菱形,因为直线斜率为,显然,所以直线方程为 7分, 解得, 所以点坐标为 9分因为点在圆上,所以,解得 11分即,经验证满足条件 12分所以存在点,使得 13分.考点:1.圆的方程;2.直线与圆的位置关系.3(1)证明见解析;(2),为圆的轨迹方程;(3)或;【解析】试题分析:(1)由题可知,判断直线与圆的位置关系,我们常采取两种方法,圆心到直线的距离与半径的比较,若距离大于半径,则位置关系是相离,若距离等于半径,则位置关系是相切,若距离小于半径,则位置关系是相交;或是判断直线所经过的定点和圆的关系,点在圆内,则位置关系是相交,点在圆上,则位置关系是相切,点在圆外,则位置关系是相离;(2)关于求轨迹方程的问题,求哪个点的轨迹就设哪个点的坐标,通过题中的条件将x,y的关系式求出,即得轨迹方程;(3)过一点的直线用点斜式设出,再和圆的方程联立,由韦达定理以及,得出直线方程为或;试题解析:()解法一:圆的圆心为,半径为。圆心C到直线的距离,直线与圆C相交,即直线与圆C总有两个不同交点;OBMAC方法二:直线过定点,而点在圆内直线与圆C相交,即直线与圆C总有两个不同交点;(4分)()当M与P不重合时,连结CM、CP,则,又因为,设,则,化简得:当M与P重合时,也满足上式。故弦AB中点的轨迹方程是。(8分)()设,由,化简的 又由消去y得 (*) (10分)由解得,带入(*)式解得,直线的方程为或。(12分)考点:直线与圆的位置关系中点轨迹方程直线方程的应用4(1);(2);(3)在以为直径的所有圆中,存在圆:或,使得圆经过点【解析】试题分析:(1)根据题意设出圆心和半径,列出和的方程,求得圆的方程;(2)根据,求得,所以圆心到直线的距离为,求得的值;(3)若圆经过点,则必有即,当直线的斜率不存在时,显然满足题意得圆,当直线的斜率存在时,设其斜率为,直线的方程为:,代入圆的方程,由韦达定理,得到的值,联立解得的值,存在所求的圆,进而得到所求的圆的方程.试题解析:(1)设圆心C(a,a),半径为r.因为圆C经过点A(2,0),B(0,2),所以|AC|BC|r,易得a0,r2,所以圆C的方程是. 3分(2)因为·2×2×cos,2,且与的夹角为POQ,所以cosPOQ,POQ120°,所以圆心C到直线l:kxy10的距离d1,又d,所以. 7分(联立直线与圆的方程求解酌情给分)(3)()当直线的斜率不存在时,直线经过圆的圆心,此时直线与圆的交点为,即为圆的直径,而点在圆上,即圆也是满足题意的圆 8分()当直线的斜率存在时,设直线,由,消去整理,得,由,得或设,则有 9分由得, , 若存在以为直径的圆经过点,则,所以,因此,即, 10分则,所以,满足题意 12分此时以为直径的圆的方程为,即,亦即 13分综上,在以为直径的所有圆中,存在圆:或,使得圆经过点 14分考点:1.圆的方程;2.直线方程;3.韦达定理.5(1);(2).【解析】试题分析:(1)联立直线与圆的方程,利用判别式为0得出值,即得圆的方程;(2)先求出,联立直线与圆的方程,利用根与系数的关系进行求解.解题思路: 直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识.试题解析:()因为得,由题意得,所以故所求圆C的方程为()令,得,即所以假设存在实数,当直线AB与轴不垂直时,设直线AB的方程为,代入得,设从而因为而因为,所以,即,得当直线AB与轴垂直时,也成立故存在,使得.考点:1.圆的方程;2.直线与圆的位置关系.6(1);(2);(3).【解析】试题分析:(1)由圆的一般方程知当时表示圆的方程;(2)联立直线与圆的方程,消元后的到关于的一元二次方程,因为所以,可求出的值;(3)利用根与系数关系求出中点坐标即为圆心,再利用垂径定理求出弦长的一半即为半径,能写出圆的方程.试题解析:(1)(2) 代入得, 得出: (3)设圆心为 半径13分圆的方程 考点:1.圆的方程;2.直线与圆的位置关系.7()1;()【解析】试题分析:()当b=1时,点M(0,b)在圆C上,当且仅当直线l经过圆心C时,满足MPMQ把圆心坐标(1,1)代入直线,可得k的值()把直线的方程代入圆的方程转化为关于x的一元二次方程,利用根与系数的关系以及,求得令,则 在区间上单调递增,求得,可得 ,解此不等式求得k的取值范围(注意检验0)试题解析:()圆,当b=1时,点M(0,b)在圆C上,当且仅当直线l经过圆心C时,满足MPMQ圆心C的坐标为(1,1),k=1()由 ,消去y得: 设,MPMQ,即,即,即令,则在区间上单调递增当时,即,解得,或由式得,解得k0或k的取值范围是考点:直线和圆相交的性质;一元二次方程根与系数的关系;函数的单调性8(1);(2) ;(3)定值为3;【解析】试题分析:(1)由向量的数量积为0,知两向量是垂直的,即,因为点A在圆C上故直线过圆心C,将点的坐标代入到直线方程中,得到;(2)对于求轨迹方程的问题,一般来讲,求哪个点,就设设出哪个点的坐标,利用题意列出关系式,本题中,设 ,则,将坐标代入,化简可得出M的轨迹方程 ;(3)联立方程,通过韦达定理,得出M,N的坐标,从而求出,两者相乘,进行化简,得出定值是3.试题解析:()即,因为点A在圆C上故直线过圆心C,得 3分()设 ,则,即坐标代入得: 化简得: 8分()设将代入并整理得: 则为方程(*)的两根 10分与联立得交点 12分故:=3 (定值) 14分考点:向量的数量积圆的性质韦达定理9(1);(2)见解析;(3)【解析】试题分析:(1)易得点O到l的距离,利用点到直线的距离公式即可求出k;(2)利用O、P、C、D四点共圆求得其圆的方程,发现直线是圆与圆的公共弦所在的直线方程,两式作差即可;(3)设圆心O到直线EF、GH的距离分别为.则所以再用均值不等式即可求出最大值.试题解析:(1)AOB=,点O到l的距离 2分=· 4分(2)由题意可知:O、P、C、D四点共圆且在以OP为直径的圆上,设.其方程为:即 又C、D在圆O:上 即 7分由 得 直线CD过定点 9分(3)设圆心O到直线EF、GH的距离分别为.则 11分 当且仅当 即 时,取“=”四边形EGFH的面积的最大值为 14分考点:圆的综合应用【答案】()或()或【解析】试题分析:()解决直线与圆位置关系的综合问题时,要充分考虑平面几何知识的运用,不要单纯地依靠代数运算,这样简单又不易出错由题意知的斜率必然存在,可设出直线的方程,.其中r为圆的半径,d为弦心距,l为弦长即可解决;()采用设而不求,利用直线与圆的方程联立的关于x的二次方程,由得,即,再利用韦达定理即可.试题解析:()由题设知直线的斜率存在,设其方程为,即圆:,即,圆心,半径为由,知圆心到直线的距离为,于是,即,整理得,解得,或所以直线的方程为或 5分()由直线的斜率为,设直线的方程为由 ,得令,解得(1)设,则,因为以为直径的圆过原点,所以所以,即代入得,解得或,满足(1)故直线的方程为或 10分考点:直线与圆的位置关系的综合11();();()或.【解析】试题分析:()由题意可设圆M的方程为,求出圆M分别与x轴、y轴交于点A、B的坐标,利用面积公式,可得:AOB的面积为定值;()由|OC|=|OD|,知OMl,解得t=±1,再验证,即可求圆M的方程;()设,整理得设直线GH的方程为,代入,利用韦达定理,确定直线方程,即可得出结论试题解析:()由题意可设圆M的方程为,即.令,得;令,得.(定值). ()由,知.所以,解得.当时,圆心M到直线的距离小于半径,符合题意;当时,圆心M到直线的距离大于半径,不符合题意.所以,所求圆M的方程为. ()设,又知,所以,.因为,所以.将,代入上式,整理得. 设直线的方程为,代入,整理得.所以,.代入式,并整理得,即,解得或.当时,直线的方程为,过定点;当时,直线的方程为,过定点考点:圆的方程;直线与圆的位置关系;分析思考能力和计算能力.12(1);(2);(3)【解析】试题分析:(1)已知得圆的半径为圆心到直线的距离,求得半径r=2,所以圆的标准方程为:;通过半弦长与半径、弦心距的关系求得弦AB长为;(2)由题意知点M、N在以点为圆心,线段长为半径的圆G上,而,所以,圆G的方程为,与圆C的方程相减得公共弦MN的方程;(3)由已知可设直线的方程为:,联立圆的方程化简得,得,由根与系数的关系得,又为钝角,所以,变形化简得,而当b=0时直线过点R(1,-1),所以纵截距b的取值范围是.试题解析:(1)由题意得:圆心到直线的距离为圆的半径,所以圆的标准方程为: 所以圆心到直线的距离 (2)因为点,所以,所以以点为圆心,线段长为半径的圆方程: (1)又圆方程为: (2),由得直线方程: (3)设直线的方程为:联立得:,设直线与圆的交点, 由,得, (3)因为为钝角,所以,即满足,且与不是反向共线,又,所以 (4)由(3)(4)得,满足,即,当与反向共线时,直线过(1,-1),此时,不满足题意,故直线纵截距的取值范围是,且考点:直线与圆的位置关系与向量的数量积运算的应用13(1);(2)存在,且.【解析】试题分析:(1)充分利用垂直直线系方程设直线方程,即若直线垂直于直线,则可设直线方程为:,并利用圆与直线相切时,圆心到直线的距离等于半径的几何性质性质求解得直线方程;(2)假设存在,利用条件表达出并利用坐标化简求解.试题解析:因所求直线垂直于直线,故设所求直线方程为,直线与圆相切,得,所求直线方程为 .假设存在这样的点,当为圆与轴左交点时,;当为圆与轴右交点时,依题意,解得,(舍去),或.下面证明 点对于圆上任一点,都有为一常数.设,则,从而为常数.考点:(1)直线与圆位置关系;(2)存在性问题.14(1),(2):2,:证明略.【解析】试题分析:(1)所求直线与垂直,则斜率为负倒数关系,因此可依方程设出所求直线方程,利用圆心到此直线的距离为半径可求出此直线方程;(2)为常考点,利用弦心距,半径,弦长的一半三者构成勾股定理的关系求解;设直线的方程为:,把转化为含的代数式进行运算,也可设,把转化为含的代数式进行运算.试题解析:,直线,设所求切线方程为:,则,所以:;:,圆心到直线的距离,所以弦的长为;(或由等边三角形亦可).解法一:设直线的方程为:存在,则由,得,所以或,将代入直线,得,即,则,:,得,所以为定值解法二:设,则,直线,则,直线,又,与交点,将,代入得,所以,得为定值.考点:点到线的距离公式,直线的点斜式,斜截式方程,直线与圆相交问题,化归与转化思想

    注意事项

    本文(直线与圆-韦达定理(共28页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开