算24点的技巧及题目(共5页).doc
精选优质文档-倾情为你奉上“算24点”的技巧1利用3×824、4×624求解: 把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。如3、3、6、10可组成(106÷3)×324等。又如2、3、3、7可组成(732)×324等。实践证明,这种方法是利用率最大、命中率最高的一种方法。 2利用0、11的运算特性求解: 如3、4、4、8可组成3×84424等。又如4、5、J、K可组成11×(54)1324等。 3在有解的牌组中,用得最为广泛的是以下六种解法:(用a、b、c、d表示牌面上的四个数) (ab)×(cd) 如(104)×(22)24等。 (ab)÷c×d 如(102)÷2×424等。 (ab÷c)×d 如(32÷2)×1224等。 (abc)×d 如(952)×224等。 a×bcd 如11×3l1024等。 (ab)×cd 如(4l)×6624等。 例1: 3388:解法8/(3-8/3)=24按第一种方法来算,我们有8就先找3,你可能会问这里面并没有3,其实除以1/3,就是乘3. 例2: 5551:解法5*(5-1/5) 这道体型比较特殊,5*2.5算是比较少见,一般的简便算法都是3*8,2*12,4*6,15+9,25-1,但5*25也是其中一种 ,一般情况下,先要看4张牌中是否有2,3,4,6,8,Q, 如果有,考虑用乘法,将剩余的3个数凑成对应数。如果有两个相同的6,8,Q,比如已有两个6,剩下的只要能凑成3,4,5都能算出24,已有两个8,剩下的只要能凑成2,3,4,已有两个Q,剩下的只要能凑成1,2,3都能算出24,比如(9,J,Q,Q)。如果没有2,3,4,6,8,Q,看是否能先把两个数凑成其中之一。总之,乘法是很重要的,24是30以下公因数最多的整数。 (2)将4张牌加加减减,或者将其中两数相乘再加上某数,相对容易。 (3)先相乘再减去某数,有时不易想到。例如(4,10,10,J) ,(6,10,10,K) (4)必须用到乘法,且在计算过程中有分数出现。有一个规律,设4个数为a,b,c,d。必有ab+c=24或ab-c=24 d=a或b。若d=a 有a(b+c/a)=24 或 a(b-c/a)=24 如最常见的(1,5,5,5), (2,5,5,10)因为约分的原因也归入此列。(5,7,7,J) (4,4,7,7)(3,3,7,7)等等。(3,7,9,K)是个例外,可惜还有另一种常规方法,降低了难度。只能用此法的只有10个。 (5)必须用到除法,且在计算过程中有分数出现。这种比较难,比如(1,4,5,6),(3,3,8,8)(1,8,Q,Q)等等。 只能用此法的更少,只有7种。 (6)必须用到除法,且在计算过程中有较大数出现,不过有时可以利用平方差公式或提公因数等方法不必算出这个较大数具体等于几。比如(3,5,7,K),(1,6,J,K)等等。只能用此法的只有16种。 (7)最特殊的是(6,9,9,10),9*10/6+9=24,9是3的倍数,10是2的倍数,两数相乘的积才能整除6,再也找不出第二个类似的只能用此法解决的题目了。算24的题目 5 5 5 1: 5(5-1/5)=24 2 7 9 10: (7-(2-9)+10)=24 2 7 10 10: (2×(7+10)-10)=24 2 8 8 8: (2×(8+8)-8)=24 2 8 10 10: (2+(10/10)×8)=24 2 9 10 10: (9+(10/2)+10)=24 2 8 8 9: (2-(8-9)×8)=24 2 8 8 10: (8-(2-8)+10)=24 2 8 9 9: (2+(9/9)×8)=24 2 8 9 10: (2×(8+9)-10)=24 3 3 3 9: (9-(3/3)×3)=24 3 3 3 10: (3×(10-3)+3)=24 3 3 3 3: (3×(3×3)-3)=24 3 3 3 4: (3×(3+4)+3)=24 3 3 3 5: (3×3)+(3×5)=24 3 3 3 6: (3×(3+3)+6)=24 3 3 3 7: (7+(3/3)×3)=24 3 3 3 8: (3+(3-3)×8)=24初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。校园内景色如常,照样是绿意盈盈,枝繁叶茂,鸟儿歌唱。经过西区公园,看那碧绿的草地,飞翔中的亭子,便想起十七那年,在这里寻找春天的日子。本想就此停车再感受一遍,可惜心中记挂北区的荷塘。回想起冬日清理完荷塘的枯枝败叶,一片萧条的景色:湖水变成墨绿色,没有鱼儿游动,四处不见了鸟儿的踪影,只有莲藕躺在湖底沉沉睡去。清洁大叔撑着竹竿,乘一叶扁舟,把一片片黑色腐烂的枯叶残枝挑上船。几个小孩用长长的铁钩把莲蓬勾上岸,取下里头成熟的莲子。专心-专注-专业