欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数的整除知识点(共10页).doc

    • 资源ID:13559328       资源大小:23.50KB        全文页数:10页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数的整除知识点(共10页).doc

    精选优质文档-倾情为你奉上 数的整除知识点数的整除问题,内容丰富,思维技巧性强。它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。数的整除1.整除因数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。记作ba.如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数。例如:在上面算式中,15是3的倍数,3是15的因数;63是7的倍数,7是63的因数。2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。即:如果ca,cb,那么c(a±b)。例如:如果210,26,那么2(106),并且2(106)。性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bca,那么ba,ca。性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。即:如果ba,ca,且(b,c)=1,那么bca。例如:如果228,728,且(2,7)=1,那么(2×7)28。性质4:如果c能整除b,b能整除a,那么c能整除a。即:如果cb,ba,那么ca。例如:如果39,927,那么327。3.数的整除特征能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。能被5整除的数的特征:个位是0或5。能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。能被4(或25)整除的数的特征:末两位数能被4(或25)整除。例如:1864=180064,因为100是4与25的倍数,所以1800是4与25的倍数.又因为464,所以1864能被4整除.但因为2564,所以1864不能被25整除.能被8(或125)整除的数的特征:末三位数能被8(或125)整除。例如:2937529000375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125375,所以29375能被125整除.但因为8375,所以。能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。例如:判断这九位数能否被11整除?解:这个数奇数位上的数字之和是97531=25,偶数位上的数字之和是864220.因为25205,又因为115,所以。再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(451)-(73)0.因为0是任何整数的倍数,所以110.因此13574是11的倍数。能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。例如:判断是否是7的倍数?解:把分为1059和282两个数.因为1059-282777,又7777,所以7.因此是7的倍数。再例如:判断能否被13整除?解:把分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为8212819,又13819,所以132821,进而13.质数和合数1.质数与合数一个数除了1和它本身,不再有别的因数,这个数叫做质数(也叫做素数)。一个数除了1和它本身,还有别的因数,这个数叫做合数。要特别记住:1不是质数,也不是合数。2.质因数与分解质因数如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:把30分解质因数。解:302×3×5。其中2、3、5叫做30的质因数。又如122×2×322×3,2、3都叫做12的质因数。例1 三个连续自然数的乘积是210,求这三个数.解:210=2×3×5×7可知这三个数是5、6和7。例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=1129=3+37。17×2339111×293193×37111。所求的最大值是391。答:这两个质数的最大乘积是391。例3 自然数是质数,还是合数?为什么?解:是合数。因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:19中有4个质数2、3、5、7)。如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。综上所述,连续九个自然数中至多有4个质数。例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。解:5=5,7=7,6=2×3,142×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(3×5)只能放在第一组,则5必须放在第二组。这样14×15=210=5×6×7。这五个数可以分为14和15,5、6和7两组。例6 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。分析 先大概估计一下,30×30×30=27000,远小于42560.40×40×4064000,远大于42560.因此,要求的三个自然数在3040之间。解:42560=26×5×7×1925×(5×7)×(19×2)32×35×38(合题意)要求的三个自然数分别是32、35和38。例7 有3个自然数a、b、c.已知a×b=6,b×c=15,a×c10.求a×b×c是多少?解:62×3,15=3×5,102×5。(a×b)×(b×c)×(a×c)=(2×3)×(3×5)×(2×5)a2×b2×c2=22×32×52(a×b×c)2(2×3×5)2a×b×c=2×3×530在例7中有a222,b2=32,c2=52,其中22=4,329,5225,像4、9、25这样的数,推及一般情况,我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。如.12=1,224,329,42=16,112=121,122=144,其中1,4,9,16,121,144,都叫做完全平方数.下面让我们观察一下,把一个完全平方数分解质因数后,各质因数的指数有什么特征。例如:把下列各完全平方数分解质因数:9,36,144,1600,。解:9=32 36=22×32 144=32×241600=26×52 =32×54×72可见,一个完全平方数分解质因数后,各质因数的指数均是偶数。反之,如果把一个自然数分解质因数之后,各个质因数的指数都是偶数,那么这个自然数一定是完全平方数。如上例中,3662,144=122,1600=402,=5252。例8 一个整数a与1080的乘积是一个完全平方数.求a的最小值与这个平方数。分析 a与1080的乘积是一个完全平方数,乘积分解质因数后,各质因数的指数一定全是偶数。解:1080×a=23×33×5×a,又1080=23×33×5的质因数分解中各质因数的指数都是奇数,a必含质因数2、3、5,因此a最小为2×3×5。1080×a1080×2×3×51080×3032400。答:a的最小值为30,这个完全平方数是32400。例9 问360共有多少个约数?分析 360=23×32×5。为了求360有多少个约数,我们先来看32×5有多少个约数,然后再把所有这些约数分别乘以1、2、22、23,即得到23×32×5(=360)的所有约数.为了求32×5有多少个约数,可以先求出5有多少个约数,然后再把这些约数分别乘以1、3、32,即得到32×5的所有约数。解:记5的约数个数为Y1,32×5的约数个数为Y2,360(=23×32×5)的约数个数为Y3.由上面的分析可知:Y3=4×Y2,Y23×Y1,显然Y1=2(5只有1和5两个约数)。因此Y34×Y2=4×3×Y1=4×3×2=24。所以360共有24个约数。说明:Y3=4×Y2中的“4”即为“1、2、22、23”中数的个数,也就是其中2的最大指数加1,也就是36023×32×5中质因数2的个数加1;Y2=3×Y1中的“3”即为“1、3、32”中数的个数,也就是23×32×5中质因数3的个数加1;而Y1=2中的“2”即为“1、5”中数的个数,即23×32×5中质因数5的个数加1.因此Y3(31)×(2+1)×(1+1)=24。对于任何一个合数,用类似于对23×32×5(=360)的约数个数的讨论方式,我们可以得到一个关于求一个合数的约数个数的重要结论:一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。例10 求240的约数的个数。解:24024×3×5,240的约数的个数是(41)×(1+1)×(11)=20,240有20个约数。请你列举一下240的所有约数,再数一数,看一看是否是20个?公因数和最大公因数1.公因数和最大公因数几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。例如:12的因数有:1,2,3,4,6,12;18的因数有:1,2,3,6,9,18。12和18的公数因有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。例如:12的倍数有:12,24,36,48,60,72,84, 18的倍数有:18,36,54,72,90,12和18的公倍数有:36,72,.其中36是12和18的最小公倍数,记作12,18=36。3.互质数如果两个数只有公因数1,那么这两个数互为互质数。奇数和偶数1.奇数和偶数整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。特别注意,因为0能被2整除,所以0是偶数。2.奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。性质2:偶数±奇数=奇数。性质3:偶数个奇数相加得偶数。性质4:奇数个奇数相加得奇数。性质5:偶数×奇数=偶数,奇数×奇数=奇数。专心-专注-专业

    注意事项

    本文(数的整除知识点(共10页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开