高中物理万有引力定律知识点总结与典型例题精选汇总(共11页).doc
-
资源ID:13646522
资源大小:333.50KB
全文页数:11页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中物理万有引力定律知识点总结与典型例题精选汇总(共11页).doc
精选优质文档-倾情为你奉上万有引力定律 人造地球卫星夯实基础知识1开普勒行星运动三定律简介(轨道、面积、比值)丹麦天文学家第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等即开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。2万有引力定律及其应用(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。(1687年)叫做引力常量,它在数值上等于两个质量都是1kg的物体相距1m时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。万有引力常量的测定卡文迪许扭秤实验原理是力矩平衡。实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m,有(式中RE为地球半径或物体到地球球心间的距离),可得到。(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离对于均匀的球体,r是两球心间的距离当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F近为无穷大。 (3) 地球自转对地表物体重力的影响。重力是万有引力产生的,由于地球的自转,因而地球表面的物OONF心mF引mg甲体随地球自转时需要向心力重力实际上是万有引力的一个分力另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力 F向=mRcos·2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg,其方向与支持力N反向,应竖直向下,而不是指向地心。由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极R逐渐减小,向心力mRcos·2减小,重力逐渐增大,相应重力加速度g也逐渐增大。在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有FF向m2g,所以m2g=F一F向Gm2R自2 。物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F引和支持力N是一对平衡力,此时物体的重力mgNF引。NoF引丙NF引o乙综上所述重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,在此基础上就有:地球表面处物体所受到的地球引力近似等于其重力,即mg 万有引力定律的应用: 基本方法:卫星或天体的运动看成匀速圆周运动,F万=F心(类似原子模型)方法:轨道上正常转:地面附近:G= mg GM=gR2 (黄金代换式) (1)天体表面重力加速度问题通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2gG, g=GM/R2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/(R+h)2,比较得gh=()2·g设天体表面重力加速度为g,天体半径为R,由mg=得g=,由此推得两个不同天体表面重力加速度的关系为(2)计算中心天体的质量某星体m围绕中心天体m中做圆周运动的周期为T,圆周运动的轨道半径为r,则:由得:例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。可以注意到:环绕星体本身的质量在此是无法计算的(选择题)。(3)计算中心天体的密度=由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M若知道行星的半径R则可得行星的密度人造地球卫星。这里特指绕地球做匀速圆周运动的人造卫星。1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,地球球心一定在卫星的轨道平面内。2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有3、表征卫星运动的物理量:线速度、角速度、周期等:(1)向心加速度与r的平方成反比。=当r取其最小值时,取得最大值。a向max=g=9.8m/s2(2)线速度v与r的平方根成反比v=当h,v当r取其最小值地球半径R时,v取得最大值。 V max=7.9km/s(3)角速度与r的二分之三次方成反比=当h,当r取其最小值地球半径R时,取得最大值。max=1.23×103rad/s(4)周期T与r的二分之三次方成正比。T=2当h,T当r取其最小值地球半径R时,T取得最小值。 T min=2=284 min卫星的能量:(类似原子模型)r增v减小(EK减小<Ep增加),所以 E总增加;需克服引力做功越多,地面上需要的发射速度越大应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4103km 表面重力加速度g=9.8 m/s2 月球公转周期30天4宇宙速度及其意义(1)三个宇宙速度的值分别为第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为: 第一宇宙速度的计算在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力当rh时ghg所以v1=79×103m/s第二宇宙速度(脱离速度):如果卫生的速大于而小于 ,卫星将做椭圆运动。当卫星的速度等于或大于的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,把叫做第二宇宙速度,第二宇宙速度是挣脱地球引力束缚的最小发射速度。第三宇宙速度:物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称逃逸速度,其值为:(2)当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同当vv1时,被发射物体最终仍将落回地面;当v1vv2时,被发射物体将环绕地球运动,成为地球卫星;当v2vv3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;当vv3时,被发射物体将从太阳系中逃逸。5同步卫星(所有的通迅卫星都为同步卫星) 同步卫星。“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,即T=24h, 特点(1)地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。(2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。(3)同步卫星必位于赤道上方h处,且h是一定的得故(4)地球同步卫星的线速度:环绕速度由得(5)运行方向一定自西向东运行人造天体在运动过程中的能量关系当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。同样质量的卫星在不同高度轨道上的机械能不同。其中卫星的动能为,由于重力加速度g随高度增大而减小,所以重力势能不能再用Ek=mgh计算,而要用到公式(以无穷远处引力势能为零,M为地球质量,m为卫星质量,r为卫星轨道半径。由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。)因此机械能为。同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。题型解析类型题: 万有引力定律的直接应用 1.【例题】下列关于万有引力公式的说法中正确的是( )A公式只适用于星球之间的引力计算,不适用于质量较小的物体B当两物体间的距离趋近于零时,万有引力趋近于无穷大C两物体间的万有引力也符合牛顿第三定律D公式中万有引力常量G的值是牛顿规定的2.【例题】设想人类开发月球,不断地把月球上的矿藏搬运到地球上假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较( )A地球与月球间的万有引力将变大B地球与月球间的万有引力将减小C月球绕地球运动的周期将变长D月球绕地球运动的周期将变短类型题: 重力加速度g随离高度h变化情况 表面重力加速度:轨道重力加速度:3.【例题】火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为( )(A)0.2 g(B)0.4 g(C)2.5 g(D)5 类型题: 用万有引力定律求天体的质量和密度 通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。由 得又 得4.【例题】宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。5.【例题】某行星的卫星,在靠近行星的轨道上运动,若要计算行星的密度,唯一要测量出的物理是()A:行星的半径B:卫星的半径C:卫星运行的线速度D:卫星运行的周期类型题: 双星问题 宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将围绕它们连线上的某一固定点做同周期的匀速圆周运动。这种结构叫做双星。 由于双星和该固定点总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由F=m2r可得,于是有m1m2r1r2O列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆6.【例题】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。7.【例题】在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示。此时两小球到转轴的距离r1与r2之比为( ) r1 r2m1 m2A11B1 C21D12类型题: 人造卫星的一组问题 8.【例题】“神舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行 “轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是A动能、重力势能和机械能都逐渐减小B重力势能逐渐减小,动能逐渐增大,机械能不变C重力势能逐渐增大,动能逐渐减小,机械能不变D重力势能逐渐减小,动能逐渐增大,机械能逐渐减小9.【例题】 如图所示,某次发射同步卫星时,先进入一个近地的圆轨道,然后在P点点火加速,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步轨道上的Q),到达远地点时再次自动点火加速,进入同步轨道。设卫星在近地圆轨道上运行的速率为v1,在P点短时间加速后的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在Q点短时间加速后进入同步轨道后的速率为v4。试比较v1、v2、v3、v4的大小,并用小于号将它们排列起来_。Qv2v3Pv4v1类型题: 卫星的追及问题 10.【例题】如右图所示,有A、B两个行星绕同一恒星O做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星第一次相遇(即两行星距离最近),则()。A经过时间t=T2+T1,两行星将第二次相遇B经过时间,两行星将第二次相遇经过时间,两行星第一次相距最远D经过时间 两行星第一次相距最远11.【例题】A、B两行星在同一平面内绕同一恒星做匀速圆周运动,运行方向相同,A的轨道半径为r1,B的轨道半径为r2,已知恒星质量为,恒星对行星的引力远大于得星间的引力,两行星的轨道半径r1r2。若在某一时刻两行星相距最近,试求:再经过多少时间两行星距离又最近?类型题: 数学知识的运用 物理是以数学为基础的。合理运用数学知识,可以使问题简化。甚至在有的问题中,数学知识起关键作用。割补法的运用12.【例题】如图所示,在距一质量为M、半径为R、密度均匀的球体中心2R处,有一质量为m的质点,M对m的万有引力的大小为F。现从M中挖出一半径为r的球体,如图,OO=R/2。求M中剩下的部分对m的万有引力的大小。moor答案1.C 2.BD 3.B 5.D 7.D 8.D 9.V2>V1>V4>V34. 解析:设抛出点的高度为h, 可得设该星球上的重力加速度为g,由平抛运动的规律得:可得由万有引力定律与牛顿第二定律得: 联立以上各式解得。6. 解析:设两星质量分别为M1和M2,都绕连线上O点作周期为T的圆周运动,星球1和星球2到O的距离分别为l1和l2。由万有引力定律和牛顿第二定律及几何条件可得M1:GM1()2 l1,M2对M2:GM2()2 l2,M1两式相加得M1M2(l1l2)。11.解:(1)设A、B的角速度分别为1、2,经过时间t,A转过的角度为1t,B转过的角度为2t。A、B距离最近的条件是:1t-2t=。恒星对行星的引力提供向心力,则:,由得得出:,求得:。12. 解析:根据万有引力定律,挖去的球体原来对质点m的引力为,而。所以剩下的部分对质点m的引力为。答案:专心-专注-专业