欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2010部分市中考几何压轴题(共12页).doc

    • 资源ID:13664106       资源大小:1.39MB        全文页数:12页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2010部分市中考几何压轴题(共12页).doc

    精选优质文档-倾情为你奉上2010部分省市中考几何压轴题例1(2010浙江嘉兴)如图,已知O的半径为1,PQ是O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个的顶点与点P重合,第二个的顶点是与PQ的交点,最后一个的顶点、在圆上(第23题)(第23题 图1)(第23题 图2)(第1题 图1)(1)如图1,当时,求正三角形的边长;(2)如图2,当时,求正三角形的边长;(3)如题图,求正三角形的边长(用含n的代数式表示)(1)设与交于点D,连结,则,在中,即,解得(2)设与交于点E,连结,则,在中,即,解得(3)设与交于点F,连结,则,在中,即,解得2(2010 四川南充)如图,ABC内接于O,ADBC,OEBC, OEBC(1)求BAC的度数(2)将ACD沿AC折叠为ACF,将ABD沿AB折叠为ABG,延长FC和GB相交于点H求证:四边形AFHG是正方形(3)若BD6,CD4,求AD的长AFCDEGHBO【答案】(1)解:连结OB和OCOEBC,BECEOEBC,BOC90°,BAC45°(2)证明:ADBC,ADBADC90°由折叠可知,AGAFAD,AGHAFH90°,BAGBAD,CAFCAD,BAGCAFBADCADBAC45°GAFBAGCAFBAC90°四边形AFHG是正方形 (3)解:由(2)得,BHC90°,GHHFAD,GBBD6,CFCD4设AD的长为x,则BHGHGBx6,CHHFCFx4在RtBCH中,BH2CH2BC2,(x6)2(x4)2102解得,x1=12,x22(不合题意,舍去)AD12例3(2010湖北荆门)如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B两点重合),过点C作CP的垂线CD交PB的延长线于D点(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长; (3)当点P运动到什么位置时,PCD的面积最大?并求出这个最大面积S。【答案】(1)由题意,AB是O的直径;ACB=90。,CDCP,PCD=90。ACP+BCD=PCB+DCB=90。,ACP=DCB,又CBP=D+DCB,CBP=ABP+ABC,ABC=APC,APCD,PCADCB;, AC·CD=PC·BC(2)当P运动到AB弧的中点时,连接AP,AB是O的直径,APB=90。,又P是弧AB的中点,弧PA=弧PB,AP=BP,PAB=PBA=45.,又AB=5,PA=,过A作AMCP,垂足为M,在RtAMC中,ACM=45 ,CAM=45,AM=CM=,在RtAMP中,AM2+AP2=PM2,PM=,PC=PM+=。由(1)知:AC·CD=PC·BC ,3×CD=PC×4,CD(3)由(1)知:AC·CD=PC·BC,所以AC:BC=CP:CD;所以CP:CD=3:4,而PCD的面积等于·=,CP是圆O的弦,当CP最长时,PCD的面积最大,而此时CP就是圆O的直径;所以CP=5,3:4=5:CD;CD=,PCD的面积等于·=; 例4(2010 四川成都)已知:如图,内接于O,为直径,弦于,是AD的中点,连结并延长交的延长线于点,连结,分别交、于点、(1)求证:是的外心;(2)若,求的长;(3)求证:(1)证明:C是AD的中点,AC=CD,CAD=ABCAB是O的直径,ACB=90°。CAD+AQC=90°又CEAB,ABC+PCQ=90°AQC=PCQ在PCQ中,PC=PQ,CE直径AB,AC=AEAE=CDCAD=ACE。在APC中,有PA=PC,PA=PC=PQP是ACQ的外心。(2)解:CE直径AB于F,在RtBCF中,由tanABC=,CF=8,得。由勾股定理,得AB是O的直径,在RtACB中,由tanABC=,得。易知RtACBRtQCA,。(3)证明:AB是O的直径,ACB=90°DAB+ABD=90°又CFAB,ABG+G=90°DAB=G;RtAFPRtGFB,即易知RtACFRtCBF,由(1),知PC=PQ,FP+PQ=FP+PC=FC。例5(2010四川 泸州)(本题满分10分)如图9,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分BAD和ADC.求证:AEDE;设以AD为直径的半圆交AB于F,连接DF交AE于G,已知CD=5,AE=8,求的值.(1)证明:在平行四边形ABCD中,ABCD,BAD+ADC=180°, 又AE、DE平分BAD、ADC, DAE+ADE=90°, AED90°, AEDE. (2)解:在平行四边形ABCD中,ADBC,AB=CD=5,AD=BC,DAE=BEA, 又DAE=BAE,BEA=BAE,BE=AB=5, 同理EC=CD=5, AD=BC=BE+EC=10, 在RtAED中,DE=6, 又AD为半圆的直径,AFD=90°,AFD=AED,DAE=FAG,AFGAED, . 例6(2010湖北宜昌)如图,P是ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;ABC的底边BC及BC上的高的长分别为a , h,且是关于x的一元二次方程的两个实数根,设过D,E,F三点的O的面积为,矩形PDEF的面积为。(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;(2)求的最小值;(3)当的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m , n , k的取值是否有关?请说明理由。(11分)ACB(第6题)解法一:(1)据题意,a+h=.所求正方形与矩形的面积之比: 由知同号, 即正方形与矩形的面积之比不小于4.(2)FED=90º,DF为O的直径.O的面积为:矩形PDEF的面积:面积之比: 设, ,即时(EF=DE), 的最小值为MN(3)当的值最小时,这时矩形PDEF的四边相等为正方形过B点过BMAQ,M为垂足,BM交直线PF于N点,设FP e,BNFE,NFBE,BN=EF,BN =FP =e.由BCMQ,得:BM =AG =h.AQBC, PFBC, AQFP,FBPABQ. ,.线段AQ的长与m,n,k的取值有关. 解法二:(1)a,h为线段长,即a,h都大于0,ah (a-h),当ah时等号成立. 故,(a-h)(ah)a h(ah)a h,()这就证得(叙述基本明晰即可)(2)设矩形PDEF的边PD=x,DE=y,则O的直径为 . SO=, S矩形PDEF=xy = =由(1)(*), .的最小值是(3)当的值最小时,这时矩形PDEF的四边相等为正方形. EF=PF作AGBC,G为垂足.AGBFEB,.AQBFPB, ,=而 EF=PF,AG=AQ=h, AG=h,或者AG=h线段AQ的长与m,n,k的取值有关.例7(2010广东清远)如下图,在O中,点P在直径AB上运动,但与A、B两点不重合,过点P作弦CEAB,在上任取一点D,直线CD与直线AB交于点F,弦DE交直线AB于点M,连接CM.(1)如图10,当点P运动到与O点重合时,求FDM的度数. (2)如图11、图12,当点P运动到与O点不重合时,求证:FM·OB=DF·MC.解:(1)点P与点O重合时,(如图10)CE是直径,CDE90°.CDEFDM180°,FDM90°.(2)当点P在OA上运动时(如图11)OPCE,CPEP. CMEM.CMPEMP.DMOEMP,CMPDMO.CMPDMCDMODMC,DMFCMO.D所对的弧是,COM所对的弧是,DCOM.DFMOCM.FM·OCDF·MC. OBOC,FM·OBDF·MC.当点P在OB上运动时,(如图12)证法一:连结AC,AE.OPCE,CPEP.CMEM,CMOEMO.DMFEMO,DMFCMOCDE所对的弧是,CAE所对的弧是.CDECAE180°.CDMFDM180°,FDMCAE.图10 图11 图12CAB(P)EOMFDCABPEOFDMOCABPEFDMCAE所对的弧是,COM所对的弧是,CAECOM.FDMCOM. DFMOCM.FM·OCDF·MC.OBOC,FM·OBDF·MC.证法二:OPCE,CPEP.CMEM,CMOEMO.DMFEMO,DMFCMOCDE所对的弧是,CDE度数的一半的度数180°的度数.FDM180°CDE180°(180°的度数)的度数.COM的度数.FDMCOMDFMOCM.FM·OCDF·MC.OBOC,FM·OBDF·MC. 例8(2010湖北黄冈)(15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.(1)a1,b2,c0(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MPMFPF1,故MPF为正三角形.(3)不存在.因为当t,x1时,PM与PN不可能相等,同理,当t,x1时,PM与PN不可能相等.例9(2010四川绵阳)如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(4,0)、B(2,0),与y轴交于点C,顶点为DE(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,EFK的面积最大?并求出最大面积CEDGAxyOBF(1)由题意,得 解得,b =1所以抛物线的解析式为,顶点D的坐标为(1,)(2)设抛物线的对称轴与x轴交于点M因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH + CH最小,即最小为DH + CH = DH + HB = BD = 而 CDH的周长最小值为CD + DR + CH =设直线BD的解析式为y = k1x + b,则 解得 ,b1 = 3所以直线BD的解析式为y =x + 3由于BC = 2,CE = BC2 =,RtCEGCOB,得 CE : CO = CG : CB,所以 CG = 2.5,GO = 1.5G(0,1.5)同理可求得直线EF的解析式为y =x +联立直线BD与EF的方程,解得使CDH的周长最小的点H(,)(3)设K(t,),xFtxE过K作x轴的垂线交EF于N则 KN = yKyN =(t +)=所以 SEFK = SKFN + SKNE =KN(t + 3)+KN(1t)= 2KN = t23t + 5 =(t +)2 +即当t =时,EFK的面积最大,最大面积为,此时K(,)例10在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?(1)解:(1)沿轴向下平移3个单位后恰好经过原点,。 将 代入,得。解得。直线AC的函数表达式为。抛物线的对称轴是直线解得抛物线的函数表达式为。(2)如图,过点B作BDAC于点D。 , 。过点P作PEx轴于点E,PECO,APEACO,解得点P的坐标为(3)()假设Q在运动过程中,存在与坐标轴相切的情况。设点Q的坐标为。 当Q与y轴相切时,有,即。当时,得,当时,得, 当Q与x轴相切时,有,即当时,得,即,解得,当时,得,即,解得,。综上所述,存在符合条件的Q,其圆心Q的坐标分别为,。()设点Q的坐标为。当Q与两坐标轴同时相切时,有。由,得,即,=此方程无解。由,得,即,解得当Q的半径时,Q与两坐标轴同时相切。例11 (2010重庆)已知:如图(1),在平面直角坐标xOy中,边长为2的等边OAB的顶点B在第一象限,顶点A在x轴的正半轴上另一等腰OCA的顶点C在第四象限,OCAC,C120°现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边OAB的边上(点A除外)存在点D,使得OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有MCN60°,其两边分别与OB、AB交于点M、N,连接MN将MCN绕着C点旋转(0°旋转角60°),使得M、N始终在边OB和边AB上试判断在这一过程中,BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由例12. 在平面直角坐标系xOy中,拋物线y= -x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条拋物线上。 (1) 求点B的坐标; (2) 点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D。使得ED=PE。以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动) j 当等腰直角三角形PCD的顶点C落在此拋物线上时,求OP的长; k 若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。专心-专注-专业

    注意事项

    本文(2010部分市中考几何压轴题(共12页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开