极坐标与参数方程数学讲义学生版(共8页).doc
精选优质文档-倾情为你奉上2013届选修44极坐标与参数方程复习讲义一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.二、知识结构1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 常见的曲线的参数方程2.直线的参数方程(1)标准式 过点Po(x0,y0),倾斜角为的直线的参数方程是 (t为参数,其几何意义是PM的数量)(2)一般式 过定点P0(x0,y0)斜率k=tg=的直线的参数方程是(t为参数,) 3.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r的圆的参数方程是(是参数) (2)椭圆 椭圆(ab0)的参数方程是 (为参数)椭圆(ab0)的参数方程是(为参数)(3)抛物线 抛物线的参数方程为4.极坐标极坐标系 在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O点叫做极点,射线Ox叫 做极轴.极点;极轴;长度单位;角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M点是平面内任意一点,用表示线段OM的长度,表示射线Ox到OM的角度 ,那么叫做M点的极径,叫做M点的极角,有序数对(,)叫做M点的极坐标.注意:点与点关于极点中心对称;点与点是同一个点;如果规定,那么除极点外,平面内的点可用唯一的极坐标表示(即一一对应的关系);同时,极坐标表示的点也是唯一确定的。极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的即一个点的极坐标是不惟一的 P(,)(极点除外)的全部坐标为(,)或(,),(Z)极点的极径为0,而极角任意取圆的极坐标方程以极点为圆心,为半径的圆的极坐标方程是 ;以为圆心, 为半径的圆的极坐标方程是 ;以为圆心,为半径的圆的极坐标方程是;直线的极坐标方程过极点的直线的极坐标方程是和. 过点,且垂直于极轴的直线l的极坐标方程是. 化为直角坐标方程为.过点且平行于极轴的直线l的极坐标方程是. 化为直角坐标方程为.极坐标和直角坐标的互化(1)互化的前提条件极坐标系中的极点与直角坐标系中的原点重合;极轴与x轴的正半轴重合两种坐标系中取相同的长度单位.(2)互化公式 的象限由点(x,y)所在的象限确定三、课前预习1直线的参数方程是( )A、(t为参数) B、(t为参数) C、 (t为参数) D、(t为参数)2已知,下列所给出的不能表示点的坐标的是( )A、 B、 C、 D、3在极坐标系中,圆=-2sin的圆心的极坐标系是( )A、 B、 C、 (1,0) D、(1,)4点,则它的极坐标是( )A、 B、 C、 D、5直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线 (为参数)和曲线上,则的最小值为( )A、1 B、2 C、3 D、46参数方程为表示的曲线是( )A、一条直线 B、两条直线 C、一条射线 D、两条射线7( )A、-6 B、 C、6 D、8极坐标方程化为直角坐标方程是( ) A、 B、 C、 D、9曲线与曲线的位置关系是( )A、 相交过圆心 B、相交 C、相切 D、相离10曲线的参数方程为(t是参数),则曲线是( )A、线段 B、双曲线的一支 C、圆 D、射线11在极坐标系中,圆上的点到直线的距离的最小值是 .12圆C:(为参数)的圆心到直线:(t为参数)的距离为 。13已知两曲线参数方程分别为和 ,它们的交点坐标为_14以直角坐标系的原点为极点,轴的正半轴为极轴,已知曲线、的极坐标方程分别为,曲线的参数方程为(为参数,且),则曲线、所围成的封闭图形的面积是 .四、典例分析考向一 极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化相关知识点:极点与原点重合,极轴与x轴正半轴重合,长度单位相同.互化公式: 或 【例1 】(1)点M的极坐标分别是,换算成直角坐标依次是 , , , (2)点M的直角坐标分别是,如果换算成极坐标依次是 , , , 【例2】在极坐标系中,过圆的圆心,且垂直于极轴的直线的极坐标方程为 【变式1】在极坐标系中,圆心在且过极点的圆的方程为( )A、 B、 C、 D、 【变式2】已知曲线的极坐标方程分别为(),则曲线与交点的极坐标为_ _. 【变式3】在极坐标系中,已知点(1,)和,则、两点间的距离是 考向二 曲线的参数方程,参数方程与普通方程的互化【例3】(1)曲线C:(为参数)的普通方程为 ( )A、 B、 C、 D、 (2)参数方程表示的曲线是( )A、椭圆 B、双曲线 C、抛物线 D、圆【变式1】已知抛物线的参数方程为(为参数)若斜率为1的直线经过抛物线的焦点,且与圆相切,则=_。【变式2】若直线与圆(为参数)没有公共点,则实数的取值范围是 .【变式3】直线被圆所截得的弦长为( )A、 B、 C、 D、【例4】已知点是圆上的动点,求的取值范围。【变式5】在平面直角坐标系中,点是椭圆上的一个动点,求的最大值【题后反思】1.化参数方程为普通方程的基本思路是消去参数,并且要保证消参的等价性,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法。2.化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)(或y=j(t)),再代入普通方程F(x,y)0,求得另一关系y=j(t)(或x=f(t))。一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)。在建立曲线的参数方程时,要注明参数及参数的取值范围。3.在参数方程与普通方程的互化中,必须使的取值范围保持一致.【课后巩固练习】1椭圆( )A、(-3,5),(-3,-3) B、(3,3),(3,-5)C、(1,1),(-7,1) D、(7,-1),(-1,-1)2参数方程( )A.双曲线的一支,这支过点(1,)B.抛物线的一部分,这部分过(1,)C.双曲线的一支,这支过(-1,)D.抛物线的一部分,这部分过(-1,)3在方程(为参数)所表示的曲线一个点的坐标是( )A、(2,-7) B、(,)C、(,) D、(1,0)4曲线的极坐标方程=sin化 成直角坐标方程为( )A、x2+(y+2)2=4 B、x2+(y-2)2=4 C(x-2)2+y2=4 D、(x+2)2+y2=45已知圆的极坐标方程=2sin(+ ),则圆心的极坐标和半径分别为( )A、(1,),r=2 B、(1,),r=1C、(1, ),r=1 D、(1, -),r=26在极坐标系中,与圆=4sin相切的一条直线的方程是( )A、sin=2 B、cos=2 C、cos=-2 D、cos=-4 7表示的曲线是( )A、圆 B、椭圆C、双曲线的一支 D、抛物线8.极坐标方程4sin2=3表示曲线是( )A、两条射线 B、两条相交直线C、圆 D、抛物线9直线:3x-4y-9=0与圆:的位置关系是( )A、相切 B、相离 C、直线过圆心 D、相交但直线不过圆心10在极坐标系中,点 到圆 的圆心的距离为( )A、2 B、 C、 D、11经过点M(1,5)且倾斜角为的直线,以定点M到动点P的位移t为参数的参数方程是( )A、 B、C、 D、 12若直线( (t为参数)与圆x2+y2-4x+1=0相切,则直线的倾斜角为( )A、 B、 C、或 D、 或13设的最小值是( )A、 B、 C、3 D、14.若直线的参数方程为(t为参数),则过点(4,-1)且与平行的直线在y轴上的截距为 .15直线(t为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .16圆的圆心坐标为 ,和圆C关于直线对称的圆C的普通方程是 。17在极坐标系中,圆与直线的位置关系是 .18在极坐标系中,直线()与圆交于、两点,则19(2012年福建理科)在直角坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.20直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线:(为参数)和曲线:上,则的最小值为 专心-专注-专业