欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2017北京中考数学二模29新定义专题(共18页).docx

    • 资源ID:13672994       资源大小:917.43KB        全文页数:12页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2017北京中考数学二模29新定义专题(共18页).docx

    精选优质文档-倾情为你奉上1【2017东城二模】29在平面直角坐标系xOy中,点P与点Q不重合.y1y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与以点P为圆心作经过点Qy1y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与 的圆,则称该圆为点P,Q的“相关圆”.(1)已知点P的坐标为(2,0), 若点Q的坐标为(0,1),求点P,Q的“相关圆”的面积; 若点Q的坐标为(3,n),且点P,Q的“相关圆”的半径为,求n的值.(2)已知ABC为等边三角形,点A和点B的坐标分别为(,0),(,0),点C在y轴正半轴上.若点P,Q的“相关圆”恰好是ABC的内切圆且点Q在直线y=2x上,求点Q的坐标. (3)已知ABC三个顶点的坐标为:A(,0),B(,0),C(0,4),点P的坐标为(0,),点Q的坐标为(m, ).若点P,Q的“相关圆”与ABC的三边中至少一边存在公共点,直接写出m的取值范围. 2【2017西城二模】29在平面直角坐标系xOy中,ABC的顶点坐标分别是A(x1,y1),B(x2,y2),C(x3,y3),对于ABC的“横长”、“纵长”、“纵横比”给出如下定义:将|x1 x2|,|x2 x3|,|x3 x1|中的最大值,称为ABC的“横长”,记作Dx;将|y1 y 2|,| y 2 y 3|,| y 3 y 1|中的最大值,称为ABC的“纵长”,记作Dy;把叫做ABC “纵横比”,记作 例如:如图1,ABC的三个顶点的坐标分别是A (𝟎,𝟑),B (𝟐,𝟏),C(𝟏,𝟐) 则Dx=|𝟐(𝟏)|=𝟑.Dy=|𝟑(𝟐)|=𝟓.纵横比(1)如图2,点A(1,0).点B(2,1) ,E(-1,2), 则AOB的纵横比,AOE的纵横比; 点在F第四象限,若AOF的纵横比为1,写出一个符合条件的点F的坐标;点M是双曲线上一个动点,若AOM的纵横比为1,求点M的坐标;(2)如图3,点A(1,0),P以P(0,)为圆心,1为半径,点N是P上一个动点,直接写出AON的纵横比𝛌的取值范围.3【2017海淀二模】29在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点下图中的P,Q两点即为同族点 (1)已知点A的坐标为(,1),在点R(0,4),S(2,2),T(2,)中,为点A的同族点的是 ;若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ; (2)直线l:,与x轴交于点C,与y轴交于点D,M为线段CD上一点,若在直线上存在点N,使得M,N两点为同族点,求n的取值范围;M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围 4【2017朝阳二模】5【2017丰台二模】29. 在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y),给出如下定义:若,则称点Q为点P的“可控变点”例如:点(1,2)的“可控变点”为点(1,2),点(1,3)的“可控变点”为点(1,3)(1)点(5,2)的“可控变点”坐标为 ;(2)若点P在函数的图象上,其“可控变点”Q的纵坐标y是7,求“可控变点”Q的横坐标;(3)若点P在函数()的图象上,其“可控变点”Q的纵坐标y 的取值范围是,求实数a的取值范围.6【2017石景山二模】29在平面直角坐标系中,点的坐标为,点的变换点的坐标定义如下:当时,点的坐标为;当时,点的坐标为. (1)点的变换点的坐标是 ;点的变换点为,连接,则= ;(2)已知抛物线与轴交于点,(点在点的左侧),顶点为.点在抛物线上,点的变换点为.若点恰好在抛物线的对称轴上,且四边形是菱形,求的值;(3) 若点是函数()图象上的一点,点的变换点为,连接,以为直径作,的半径为,请直接写出的取值范围.7【2017房山二模】29. 如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果APB=45°,则称点P为线段AB的“等角点”. 显然,线段AB的“等角点”有无数个,且A、B、P三点共圆. 设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和C的半径;y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由; (2)当点P在y轴正半轴上运动时,APB是否有最大值?如果有,说明此时APB最大的理由,并求出点P的坐标;如果没有,也请说明理由.8【2017通州二模】9【2017门头沟二模】10【2017昌平二模】29在平面直角坐标系xOy中,给出如下定义:对于C及C外一点P,M,N是C上两点,当MPN最大时,称MPN为点P关于C的“视角” (1)如图,O的半径为1,已知点A(0,2),画出点A关于O的“视角”;若点P在直线x = 2上,则点P关于O的最大“视角”的度数 ;在第一象限内有一点B(m,m),点B关于O的“视角”为60°,求点B的坐标;若点P在直线上,且点P关于O的“视角”大于60°,求点P的横坐标的取值范围(2)C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于C的“视角”都小于120°,直接写出点C的横坐标的取值范围 11【2017顺义二模】29在平面直角坐标系xOy中,已知点M(1,1),N(1,-1),经过某点且平行于OM、ON或MN的直线,叫该点关于OMN的“关联线” 例如,如图1,点P(3,0)关于OMN的“关联线”是: y=x+3,y=-x+3,x=3(1)在以下3条线中, 是点(4,3)关于OMN的“关联线”(填出所有正确的序号; x=4; y=-x-5; y=x-1 (2)如图2,抛物线经过点A(4,4),顶点B在第一象限,且B点有一条关于OMN的“关联线”是y= -x+5,求此抛物线的表达式; (3)在(2)的条件下,过点A作ACx轴于点C,点E是线段AC上除点C外的任意一点,连接OE,将OCE沿着OE折叠,点C落在点C的位置,当点C在B点关于 OMN的平行于MN的“关联线”上时,满足(2)中条件的抛物线沿对称轴向下平移多少距离,其顶点落在OE上? 12【2017平谷二模】29如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”(1)已知点C(3,1.5),D(4,3.5),E(),则是线段AB的“环绕点”的点是_;(2)已知点P(m,n)在反比例函数的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;(3)已知M上有一点P是线段AB的“环绕点”,且点M(4,1),求M的半径r的取值范围 图1 备用图13【2017怀柔二模】14【2017燕山二模】15【2017大兴二模】专心-专注-专业

    注意事项

    本文(2017北京中考数学二模29新定义专题(共18页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开