经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式(共3页).doc
-
资源ID:13689387
资源大小:171.50KB
全文页数:3页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式(共3页).doc
精选优质文档-倾情为你奉上几个经典不等式的关系一 几个经典不等式(1)均值不等式设是实数其中.当且仅当时,等号成立.(2)柯西不等式设是实数,则当且仅当或存在实数,使得时,等号成立.(3)排序不等式设,为两个数组,是的任一排列,则当且仅当或时,等号成立.(4)切比晓夫不等式对于两个数组:,有当且仅当或时,等号成立.二 相关证明(1)用排序不等式证明切比晓夫不等式证明:由而根据“顺序和乱序和”(在个部分同时使用),可得即得同理,根据“乱序和反序和”,可得综合即证(2)用排序不等式证明“几何算数平均不等式”:证明:构造两个数列:其中.因为两个数列中相应项互为倒数,故无论大小如何,乘积的和:总是两数组的反序和.于是由“乱序和反序和”,总有于是即即证(3)用切比晓夫不等式证明“算数开方平均不等式”:证明:不妨设,.由切比晓夫不等式,右边不等式显然成立.即证.(4)用切比晓夫不等式证明“调和算数平均不等式”证明: .不妨设,则,由切比晓夫不等式,上式成立.即证.(5)用均值不等式和切比晓夫不等式证明柯西不等式证明:不妨设,由切比晓夫不等式,有.由均值不等式,有.所以两边平方,即得.即证.(6)补充“调和几何平均不等式”的证明证明:将中的换成,有.两边取倒数,即得.专心-专注-专业