2014年高中数学函数教案苏教版必修(共72页).doc
精选优质文档-倾情为你奉上 课题:函数的概念(一)教学目标:(1)通过实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的三要素;(3)能够正确使用“区间”的符号表示某些集合。一、复习准备:1 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2回顾初中函数的定义:在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。表示方法有:解析法、列表法、图象法.二、新课:(一)函数的概念:思考1:(课本P15)给出三个实例: A一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。 B近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图) C国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P16表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作: 函数的定义:设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作: 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。(1)一次函数y=ax+b (a0)的定义域是R,值域也是R; (2)二次函数 (a0)的定义域是R,值域是B;当a>0时,值域;当a0时,值域。 (3)反比例函数的定义域是,值域是。(二)区间及写法:设a、b是两个实数,且a<b,则:(1) 满足不等式的实数x的集合叫做闭区间,表示为a,b;(2) 满足不等式的实数x的集合叫做开区间,表示为(a,b);(3) 满足不等式的实数x的集合叫做半开半闭区间,表示为;这里的实数a和b都叫做相应区间的端点。(数轴表示见课本P17表格)符号“”读“无穷大”;“”读“负无穷大”;“+”读“正无穷大”。我们把满足的实数x的集合分别表示为。巩固练习:用区间表示R、x|x1、x|x>5、x|x-1、x|x<0(三)例题讲解:例1已知函数,求f(0)、f(1)、f(2)、f(1)的值。变式:求函数的值域例2已知函数,(1) 求的值;(2) 当a>0时,求的值。(四)课堂练习: 1 用区间表示下列集合:2 已知函数f(x)=3x5x2,求f(3)、f(-)、f(a)、f(a+1)的值;归纳小结:函数模型应用思想;函数概念;二次函数的值域;区间表示课题:函数的概念(二)教学目标:(1)会求一些简单函数的定义域与值域,并能用“区间”的符号表示;(2)掌握复合函数定义域的求法;(3)掌握判别两个函数是否相同的方法。教学过程:一、复习准备:1. 函数y与y3x是不是同一个函数?为什么?2. 用区间表示函数yaxb(a0)、yaxbxc(a0)、y(k0)的定义域与值域。二、新课:(一)函数定义域的求法: 函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。例1:求下列函数的定义域(用区间表示) f(x)=; f(x)=; f(x)=; *复合函数的定义域求法: (1)已知f(x)的定义域为(a,b),求f(g(x)的定义域;求法:由a<x<b,知a<g(x)<b,解得的x的取值范围即是f(g(x)的定义域。 (2)已知f(g(x)的定义域为(a,b),求f(x)的定义域;求法:由a<x<b,得g(x)的取值范围即是f(x)的定义域。例2已知f(x)的定义域为0,1,求f(x1)的定义域。例3已知f(x-1)的定义域为-1,0,求f(x+1)的定义域。巩固练习:1求下列函数定义域:(1); (2)2(1)已知函数f(x)的定义域为0,1,求的定义域; (2)已知函数f(2x-1)的定义域为0,1,求f(1-3x)的定义域。(二)函数相同的判别方法:函数是否相同,看定义域和对应法则。例5(课本P18例2)下列函数中哪个与函数y=x相等?(1); (2);(3); (4) 。(三)课堂练习: 1求函数yx4x1 ,x-1,3) 的值域。归纳小结:本堂课讲授了函数定义域的求法以及判断函数相等的方法。课题:函数的表示法(一)课 型:新授课教学目标:(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用。教学重点:会根据不同的需要选择恰当的方法表示函数。教学难点:分段函数的表示及其图象。教学过程:一、复习准备:1提问:函数的概念?函数的三要素? 2讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、讲授新课:(一)函数的三种表示方法:结合课本P15 给出的三个实例,说明三种表示方法的适用范围及其优点:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1); 优点:简明扼要;给自变量求函数值。图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2); 优点:直观形象,反映两个变量的变化趋势。列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3); 优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。例1(课本P19 例3)某种笔记本的单价是2元,买x (x1,2,3,4,5)个笔记本需要y元试用三种表示法表示函数y=f(x) 例2:(课本P20 例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次甲988791928895乙907688758680丙686573727582班平均分882783854803757826请你对这三们同学在高一学年度的数学学习情况做一个分析(二)分段函数的教学:分段函数的定义:在函数的定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,如以下的例3的函数就是分段函数。说明:(1)分段函数是一个函数而不是几个函数,处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则;画分段函数图象时,应根据不同定义域上的不同解析式分别作出;(2)分段函数只是一个函数,只不过x的取值范围不同时,对应法则不相同。例3:(课本P21 例6)某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。例4已知f(x),求f(0)、ff(-1)的值 (三)课堂练习: 1课本P23 练习1,2;2作业本每本0.3元,买x个作业本的钱数y(元)。试用三种方法表示此实例中的函数。3某水果批发店,100kg内单价1元kg,500kg内、100kg及以上0.8元kg,500kg及以上0.6元kg。试用三种方法表示批发x千克与应付的钱数y(元)之间的函数y=f(x)。归纳小结:本节课归纳了函数的三种表示方法及优点;讲述了分段函数概念;了解了函数的图象可以是一些离散的点、线段、曲线或射线。作业布置:课本P24习题1.2 A组第8,9题;课后记:课题:函数的表示法(二)课 型:新授课教学目标:(1)了解映射的概念及表示方法;(2)掌握求函数解析式的方法:换元法,配凑法,待定系数法,消去法,分段函数的解析式。教学重点:求函数的解析式。教学难点:对函数解析式方法的掌握。教学过程:一、复习准备:1举例初中已经学习过的一些对应,或者日常生活中的一些对应实例:对于任何一个实数a,数轴上都有唯一的点P和它对应;对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;对于任意一个三角形,都有唯一确定的面积和它对应;某影院的某场电影的每一张电影票有唯一确定的座位与它对应;2讨论:函数存在怎样的对应?其对应有何特点?3导入:函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,即映射(mapping)。二、讲授新课:(一) 映射的概念教学:定义:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)。记作:讨论:映射有哪些对应情况?一对多是映射吗?例1(课本P22例7)以下给出的对应是不是从A到集合B的映射?(1) 集合A=P | P是数轴上的点,集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2) 集合A=P | P是平面直角坐标系中的点,B= ,对应关系f: 平面直角坐标系中的点与它的坐标对应;(3) 集合A=x | x是三角形,集合B=x | x是圆,对应关系f:每一个三角形都对应它的内切圆;(4) 集合A=x | x是新华中学的班级,集合B=x | x是新华中学的学生,对应关系:每一个班级都对应班里的学生。例2设集合A=a,b,c,B=0,1 ,试问:从A到B的映射一共有几个?并将它们分别表示出来。(二)求函数的解析式:常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法。例3已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求函数f(x)的解析式。 (待定系数法)例4已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法)例5已知函数f(x)满足,求函数f(x)的解析式。(消去法)例6已知,求函数f(x)的解析式。(三)课堂练习: 1课本P23练习4; 2已知 ,求函数f(x)的解析式。 3已知,求函数f(x)的解析式。 4已知,求函数f(x)的解析式。归纳小结:本节课系统地归纳了映射的概念,并进一步学习了求函数解析式的方法。作业布置:1 课本P24习题1.2B组题3,4;2 阅读P26 材料。课后记:课题:函数的表示法(三)课 型:新授课教学目标:(1)进一步了解分段函数的求法;(2)掌握函数图象的画法。教学重点:函数图象的画法。教学难点:掌握函数图象的画法。教学过程:一、复习准备:1举例初中已经学习过的一些函数的图象,如一次函数,二次函数,反比例函数的图象,并在黑板上演示它们的画法。2. 讨论:函数图象有什么特点?二、讲授新课:例1画出下列各函数的图象: (1) (2); 例2(课本P21例5)画出函数的图象。 例3设,求函数的解析式,并画出它的图象。变式1:求函数的最大值。变式2:解不等式。例4当m为何值时,方程有4个互不相等的实数根。变式:不等式对恒成立,求m的取值范围。(三)课堂练习: 1课本P23练习3; 2画出函数的图象。归纳小结:函数图象的画法。作业布置:课本P24习题1.2A组题7,B组题2;课后记:课题:函数及其表示复习课课 型:复习课教学目标:(1)会求一些简单函数的定义域和值域;(2)掌握分段函数、区间、函数的三种表示法;(3)会解决一些函数记号的问题教学重点:求定义域与值域,解决函数简单应用问题。教学难点:对函数记号的理解。教学过程:一、基础习题练习:(口答下列基础题的主要解答过程 指出题型解答方法)1说出下列函数的定义域与值域: ; ; ;2已知,求, , ;3已知,()作出的图象;()求的值二、讲授典型例题:例已知函数=4x+3,g(x)=x,求ff(x),fg(x),gf(x),gg(x)例2求下列函数的定义域:();();例若函数的定义域为,求实数a的取值范围()例 中山移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元. 若一个月内通话x分钟,两种通讯方式的费用分别为(元)()写出与x之间的函数关系式? ()一个月内通话多少分钟,两种通讯方式的费用相同? ()若某人预计一个月内使用话费200元,应选择哪种通讯方式?三巩固练习:1已知=x-x+3 ,求:f(x+1), f()的值;2若,求函数的解析式;3设二次函数满足且=0的两实根平方和为10,图象过点(0,3),求的解析式 已知函数的定义域为,求实数a的取值范围归纳小结:本节课是函数及其表示的复习课,系统地归纳了函数的有关概念,表示方法 作业布置:3 课本P习题1. B组题,;4 预习函数的基本性质。课后记:课题:单调性与最大(小)值 (一)课 型:新授课教学目标:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。教学难点:理解概念。教学过程:一、复习准备:1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?2. 观察下列各个函数的图象,并探讨下列变化规律:随x的增大,y的值有什么变化?能否看出函数的最大、最小值?函数图象是否具有某种对称性?3. 画出函数f(x)= x2、f(x)= x的图像。(小结描点法的步骤:列表描点连线)二、讲授新课:1.教学增函数、减函数、单调性、单调区间等概念:根据f(x)3x2、 f(x)x (x>0)的图象进行讨论: 随x的增大,函数值怎样变化? 当x>x时,f(x)与f(x)的大小关系怎样?.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function)探讨:仿照增函数的定义说出减函数的定义; 区间局部性、取值任意性定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。讨论:图像如何表示单调增、单调减?所有函数是不是都具有单调性?单调性与单调区间有什么关系?一次函数、二次函数、反比例函数的单调性2.教学增函数、减函数的证明:例1将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?1、 例题讲解例1(P29例1) 如图是定义在区间5,5上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?例2:(P29例2)物理学中的玻意耳定律(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.例3判断函数在区间2,6 上的单调性三、巩固练习:1.求证f(x)x的(0,1)上是减函数,在1,+上是增函数。2.判断f(x)=|x|、y=x的单调性并证明。3.讨论f(x)=x2x的单调性。 推广:二次函数的单调性4.课堂作业:书P32、 2、3、4、5题。四、小结:比较函数值的大小问题,运用比较法而变成判别代数式的符号。判断单调性的步骤:设x、x给定区间,且x<x; 计算f(x)f(x)至最简判断差的符号下结论。五、作业:P39、13题课后记:课题: 单调性与最大(小)值 (二)课 型:新授课教学目标:更进一步理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义.教学重点:熟练求函数的最大(小)值。教学难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值。教学过程:一、复习准备:1.指出函数f(x)axbxc (a>0)的单调区间及单调性,并进行证明。2. f(x)axbxc的最小值的情况是怎样的?3.知识回顾:增函数、减函数的定义。二、讲授新课:1.教学函数最大(小)值的概念: 指出下列函数图象的最高点或最低点, 能体现函数值有什么特征?,;, 定义最大值:设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M. 那么,称M是函数y=f(x)的最大值(Maximum Value) 探讨:仿照最大值定义,给出最小值(Minimum Value)的定义 一些什么方法可以求最大(小)值?(配方法、图象法、单调法) 试举例说明方法. 2、 例题讲解:例1(学生自学P30页例3)例2(P31例4)求函数在区间2,6 上的最大值和最小值例3求函数的最大值 探究:的图象与的关系?(解法一:单调法; 解法二:换元法)三、巩固练习:1. 求下列函数的最大值和最小值:(1); (2)2.一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?(分析变化规律建立函数模型求解最大值)房价(元)住房率(%)160551406512075100853、 求函数的最小值.四、小结:求函数最值的常用方法有:(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值(3)数形结合法:利用函数图象或几何方法求出最值五、作业:P39页A组5、B组1、2后记:课题:奇偶性课 型:新授课教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。教学重点:熟练判别函数的奇偶性。教学难点:理解奇偶性。教学过程:一、复习准备:1.提问:什么叫增函数、减函数?2.指出f(x)2x1的单调区间及单调性。 变题:|2x1|的单调区间3.对于f(x)x、f(x)x、f(x)x、f(x)x,分别比较f(x)与f(x)。二、讲授新课:1.教学奇函数、偶函数的概念:给出两组图象:、;、. 发现各组图象的共同特征 探究函数解析式在函数值方面的特征 定义偶函数:一般地,对于函数定义域内的任意一个x,都有,那么函数叫偶函数(even function). 探究:仿照偶函数的定义给出奇函数(odd function)的定义.(如果对于函数定义域内的任意一个x,都有),那么函数叫奇函数。 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) 练习:已知f(x)是偶函数,它在y轴左边的图像如图所示,画出它右边的图像。 (假如f(x)是奇函数呢?)1. 教学奇偶性判别:例1判断下列函数是否是偶函数(1)(2)例2判断下列函数的奇偶性(1) (2) (3) (4)(5) (6)4、教学奇偶性与单调性综合的问题:出示例:已知f(x)是奇函数,且在(0,+)上是减函数,问f(x)的(-,0)上的单调性。找一例子说明判别结果(特例法) 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。 (小结:设转化单调应用奇偶应用结论)变题:已知f(x)是偶函数,且在a,b上是减函数,试判断f(x)在-b,-a上的单调性,并给出证明。三、巩固练习: 1、判别下列函数的奇偶性: f(x)|x1|+|x1| 、f(x)、f(x)x、 f(x)、f(x)x,x-2,32.设f(x)axbx5,已知f(7)17,求f(7)的值。3.已知f(x)是奇函数,g(x)是偶函数,且f(x)g(x),求f(x)、g(x)。4.已知函数f(x),对任意实数x、y,都有f(x+y)f(x)f(y),试判别f(x)的奇偶性。(特值代入)5.已知f(x)是奇函数,且在3,7是增函数且最大值为4,那么f(x)在-7,-3上是( )函数,且最 值是 。四、小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质五、作业P39页A组6、B组3后记:课题:函数的基本性质运用课 型:练习课教学目标:掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。教学重点:掌握函数的基本性质。教学难点:应用性质解决问题。教学过程:一、复习准备:1.讨论:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?二、教学典型习例:1.函数性质综合题型:出示例1:作出函数yx2|x|3的图像,指出单调区间和单调性。分析作法:利用偶函数性质,先作y轴右边的,再对称作。学生作 口答 思考:y|x2x3|的图像的图像如何作?讨论推广:如何由的图象,得到、的图象?出示例2:已知f(x)是奇函数,在(0,)上是增函数,证明:f(x)在(,0)上也是增函数 分析证法 教师板演 变式训练讨论推广:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)2. 教学函数性质的应用:出示例 :求函数f(x)x (x>0)的值域。分析:单调性怎样?值域呢?小结:应用单调性求值域。 探究:计算机作图与结论推广出示例:某产品单价是120元,可销售80万件。市场调查后发现规律为降价x元后可多销售2x万件,写出销售金额y(万元)与x的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?分析:此题的数量关系是怎样的?函数呢?如何求函数的最大值?小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题。2.基本练习题:1、判别下列函数的奇偶性:y、 y (变式训练:f(x)偶函数,当x>0时,f(x)=.,则x<0时,f(x)=? )2、求函数yx的值域。3、判断函数y=单调区间并证明。 (定义法、图象法; 推广: 的单调性)4、讨论y=在-1,1上的单调性。 (思路:先计算差,再讨论符号情况。)三、巩固练习:1.求函数y=为奇函数的时,a、b、c所满足的条件。 (c=0)2.已知函数f(x)=ax+bx+3a+b为偶函数,其定义域为a-1,2a,求函数值域。3. f(x)是定义在(-1,1)上的减函数,如何f(2a)f(a3)<0。求a的范围。4. 求二次函数f(x)=x2ax2在2,4上的最大值与最小值。四、小结:本节课通过讲练结合全面提高对函数单调性和奇偶性的认识,综合运用函数性质解题五、作业P44页A组9、10题B组6题后记:课题:指数与指数幂的运算(一)课 型:新授课教学目标:了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法. 理解根式的概念教学重点:掌握n次方根的求解.教学难点:理解根式的概念,了解指数函数模型的应用背景教学过程:一、复习准备:1、提问:正方形面积公式?正方体的体积公式?(、)2、回顾初中根式的概念:如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根. 记法:二. 讲授新课:1. 教学指数函数模型应用背景: 探究下面实例,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1.某市人口平均年增长率为1.25,1990年人口数为a万,则x年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次(8次) 计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,问对折后的面积与厚度? 书P52 问题1. 国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3, 则x年后GDP为2000年的多少倍? 书P52 问题2. 生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14的关系为. 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.2. 教学根式的概念及运算: 复习实例蕴含的概念:,就叫4的平方根;,3就叫27的立方根.探究:,就叫做的?次方根, 依此类推,若,那么叫做的次方根. 定义n次方根:一般地,若,那么叫做的次方根.( th root ),其中,简记:. 例如:,则 讨论:当n为奇数时, n次方根情况如何?, 例如: , 记:当n为偶数时,正数的n次方根情况? 例如: ,的4次方根就是, 记:强调:负数没有偶次方根,0的任何次方根都是0, 即. 练习:,则的4次方根为 ; , 则的3次方根为 . 定义根式:像的式子就叫做根式(radical), 这里n叫做根指数(radical exponent), a叫做被开方数(radicand). 计算、 探究: 、的意义及结果? (特殊到一般)结论:. 当是奇数时,;当是偶数时,3、例题讲解(P5O例题1):求下列各式的值 三、巩固练习: 1. 计算或化简:; (推广:, a0).2、 化简: ; 3、求值化简: ; ; ; ()四、小结:1根式的概念:若n1且,则为偶数时,;2掌握两个公式:五、 作业:书P59 、 1题.六,后记课题:指数与指数幂的运算(二)课 型:新授课教学目标:使学生正确理解分数指数幂的概念,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.无理数指数幂的意义.教学过程:一、复习准备:1. 提问:什么叫根式? 根式运算性质:=?、=?、=?2. 计算下列各式的值: ;,二、讲授新课:1. 教学分数指数幂概念及运算性质: 引例:a>0时, ; . 定义分数指数幂:规定; 练习:A.将下列根式写成分数指数幂形式:; B. 求值 ; ; ; . 讨论:0的正分数指数幂? 0的负分数指数幂? 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂指数幂的运算性质:·; ; 2. 教学例题:(1)、(P51,例2)解: (2)、(P51,例3)用分数指数幂的形式表或下列各式(0)解: 3、无理指数幂的教学的结果?定义:无理指数幂.(结合教材P58利用逼近的思想理解无理指数幂意义)无理数指数幂是一个确定的实数实数指数幂的运算性质?三、巩固练习:1、练习:书P54 1、2、3 题.2、求值:; ; ; 3、化简:;4. 计算:的结果5. 若四. 小结:1分数指数是根式的另一种写法.2无理数指数幂表示一个确定的实数.3掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.五、作业:书P59 2、4题.后记:课题 指数与指数幂的运算(三)课 型:练习课教学目标: n次方根的求解,会用分数指数幂表示根式, 掌握根式与分数指数幂的运算.教学重点:掌握根式与指数幂的运算.教学难点:准确运用性质进行计算.教学过程:一、复习提问: (学生回答,老师板演)1. 提问:什么叫做根式? 运算性质?2. 提问:分数指数幂如何定义?运算性质? 3. 基础习题练习: (口答下列基础题) n为 时,. 求下列各式的值: ; ; ; ; ; ; 二、教学典型例题:例1(P52,例4)计算下列各式(式中字母都是正数)(1)(2)例2(P52例5)计算下列各式(1)(2)0)例3.已知=3,求下列各式的值: ();();()三、巩固练习:1. 化简:.2. 已知,试求的值3. 用根式表示, 其中.4. 已知x+x-1=3,求下列各式的值:5. 求值:; ; ; ; ; 6. 已知, 求的值.7从盛满1升纯酒精的容器中倒出升,然后用水填满,再倒出升,又用水