直线和圆的方程十年高考题(带详细解析)(共21页).doc
-
资源ID:13707666
资源大小:270KB
全文页数:21页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
直线和圆的方程十年高考题(带详细解析)(共21页).doc
精选优质文档-倾情为你奉上第七章 直线和圆的方程考点阐释解析几何是用代数方法来研究几何问题的一门数学学科在建立坐标系后,平面上的点与有序实数对之间建立起对应关系,从而使平面上某些曲线与某些方程之间建立对应关系;使平面图形的某些性质(形状、位置、大小)可以用相应的数、式表示出来;使平面上某些几何问题可以转化为相应的代数问题来研究学习解析几何,要特别重视以下几方面:(1)熟练掌握图形、图形性质与方程、数式的相互转化和利用;(2)与代数、三角、平面几何密切联系和灵活运用试题类编一、选择题1.(2003北京春文12,理10)已知直线ax+by+c=0(abc0)与圆x2+y2=1相切,则三条边长分别为|a|,|b|,|c|的三角形( )A.是锐角三角形 B.是直角三角形 C.是钝角三角形 D.不存在2.(2003北京春理,12)在直角坐标系xOy中,已知AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95 B.91 C.88 D.753.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( )A.xy=0 B.x+y=0 C.|x|y=0 D.|x|y|=04.(2002京皖春理,8)圆2x22y21与直线xsiny10(R,k,kZ)的位置关系是( )A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a)x+y+1=0与圆x2y22x0相切,则a的值为( )A.1,1 B.2,2C.1D.16.(2002全国理)圆(x1)2y21的圆心到直线y=x的距离是( )A. B.C.1D.7.(2002北京,2)在平面直角坐标系中,已知两点A(cos80°,sin80°),B(cos20°,sin20°),则|AB|的值是( )A. B. C. D.18.(2002北京文,6)若直线l:ykx与直线2x3y60的交点位于第一象限,则直线l的倾斜角的取值范围是( )A.B.C.D. 9.(2002北京理,6)给定四条曲线:x2y2,1,x21,y21其中与直线x+y=0仅有一个交点的曲线是( )A.B.C.D.10.(2001全国文,2)过点A(1,1)、B(1,1)且圆心在直线xy20上的圆的方程是( )A.(x3)2(y1)24B.(x3)2(y1)24C.(x1)2(y1)24D.(x1)2(y1)2411.(2001上海春,14)若直线x=1的倾斜角为,则( )A.等于0 B.等于 C.等于 D.不存在12.(2001天津理,6)设A、B是x轴上的两点,点P的横坐标为2且|PA|=|PB|,若直线PA的方程为xy+1=0,则直线PB的方程是( )A.x+y5=0 B.2xy1=0 C.2yx4=0 D.2x+y7=013.(2001京皖春,6)设动点P在直线x=1上,O为坐标原点以OP为直角边,点O为直角顶点作等腰RtOPQ,则动点Q的轨迹是( )A.圆 B.两条平行直线 C.抛物线 D.双曲线14.(2000京皖春,4)下列方程的曲线关于x=y对称的是( )A.x2xy21 B.x2yxy21 C.xy=1 D.x2y2115.(2000京皖春,6)直线()x+y=3和直线x+()y=2的位置关系是( )A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x2y24x30相切,若切点在第三象限,则该直线的方程是( )A.y=x B.y=x C.y=x D.y=x17.(2000全国文,8)已知两条直线l1:y=x,l2:axy=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是( )A.(0,1) B.()C.(,1)(1,) D.(1,)18.(1999全国文,6)曲线x2+y2+2x2y=0关于( )A.直线x=轴对称B.直线y=x轴对称C.点(2,)中心对称D.点(,0)中心对称19.(1999上海,13)直线y=x绕原点按逆时针方向旋转30°后所得直线与圆(x2)2+y2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线x+y2=0截圆x2y24得的劣弧所对的圆心角为( )A. B. C D.21.(1998全国,4)两条直线A1xB1yC10,A2xB2yC20垂直的充要条件是( )A.A1A2B1B20 B.A1A2B1B20C. D.=122.(1998上海)设a、b、c分别是ABC中A、B、C所对边的边长,则直线sinA·x+ay+c=0与bxsinB·y+sinC=0的位置关系是( )A.平行 B.重合 C.垂直 D.相交但不垂直23.(1998全国文,3)已知直线x=a(a>0)和圆(x1)2+y2=4相切,那么a的值是( )A.5 B.4 C.3 D.224.(1997全国,2)如果直线ax+2y+2=0与直线3xy2=0平行,那么系数a等于( )A.3 B.6 C.D.25.(1997全国文,9)如果直线l将圆x2+y22x4y=0平分,且不通过第四象限,那么直线l的斜率的取值范围是( )A.0,2 B.0,1 C.0, D.0,)26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P0(x0,y0)的直线都可以用方程yy0=k(xx0)表示B.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(yy1)·(x2x1)=(xx1)(y2y1)表示C.不经过原点的直线都可以用方程表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示27.(1995全国文,8)圆x2y22x0和x2y24y0的位置关系是( )图71A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图71中的直线l1、l2、l3的斜率分别为k1、k2、k3,则( )A.k1k2k3B.k3k1k2C.k3k2k1D.k1k3k229.(1994全国文,3)点(0,5)到直线y=2x的距离是( )A. B.C. D.二、填空题30.(2003上海春,2)直线y=1与直线y=x+3的夹角为_.31.(2003上海春,7)若经过两点A(1,0)、B(0,2)的直线l与圆(x1)2+(ya)2=1相切,则a=_.32.(2002北京文,16)圆x2y22x2y10上的动点Q到直线3x4y80距离的最小值为 33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2y22x2y10的两条切线,A、B是切点,C是圆心,那么四边形PACB面积的最小值为 34.(2002上海文,6)已知圆x2(y1)21的圆外一点P(2,0),过点P作圆的切线,则两条切线夹角的正切值是 35.(2002上海理,6)已知圆(x1)2y21和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是 36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)0和F2(x,y)0,则点P(a,b)C1C2的一个充分条件为 37.(2001上海,11)已知两个圆:x2y21与x2(y3)21,则由式减去式可得上述两圆的对称轴方程将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例推广的命题为: 38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为 .39.(2000上海春,11)集合A(x,y)|x2y24,B(x,y)|(x3)2(y4)2r2,其中r0,若AB中有且仅有一个元素,则r的值是_.40.(1997上海)设圆x2+y24x5=0的弦AB的中点为P(3,1),则直线AB的方程是 .41.(1994上海)以点C(2,3)为圆心且与y轴相切的圆的方程是 .三、解答题42.(2003京春文,20)设A(c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=1相切,点C在l上.()求动圆圆心的轨迹M的方程;()设过点P,且斜率为的直线与曲线M相交于A、B两点.(i)问:ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P到两个定点M(1,0)、N(1,0)距离的比为,点N到直线PM的距离为1求直线PN的方程45.(1997全国文,25)已知圆满足:截y轴所得弦长为2;被x轴分成两段圆弧,其弧长的比为31;圆心到直线l:x2y=0的距离为,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为31在满足条件(1)、(2)的所有圆中,求圆心到直线l:x2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数ylog2x的图象交于C、D两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(12t,2+t),R(2t,2),其中t(0,).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数(>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为1.因为直线和圆相切.利用点到直线距离公式得:d=1,即a2+b2=c2.所以,以|a|,|b|,|c|为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a、b、c之间的关系,以确定三角形形状.2.答案:B解析一:由y=10x(0x15,xN)转化为求满足不等式y10x(0x15,xN)所有整数y的值.然后再求其总数.令x=0,y有11个整数,x=1,y有10个,x=2或x=3时,y分别有9个,x=4时,y有8个,x=5或6时,y分别有7个,类推:x=13时y有2个,x=14或15时,y分别有1个,共91个整点.故选B.图72解析二:将x=0,y=0和2x+3y=30所围成的三角形补成一个矩形.如图72所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求AOB内部和边上的整点共有=91(个)评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x,y)|x|y| |x|y|04.答案:C解析:圆2x22y21的圆心为原点(0,0)半径r为,圆心到直线xsiny10的距离为:R,k,kZ0sin21 d dr圆2x22y21与直线xsiny10(R,k,kZ)的位置关系是相离5.答案:D解析:将圆x2y22x0的方程化为标准式:(x1)2y21其圆心为(1,0),半径为1,若直线(1a)xy10与该圆相切,则圆心到直线的距离d等于圆的半径r a16.答案:A图73解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A答案7.答案:D解析:如图73所示,AOB60°,又|OA|OB|1|AB|18.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围交点在第一象限, k(,)倾斜角范围为()图74方法二:如图74,直线2x+3y6=0过点A(3,0),B(0,2),直线l必过点(0,),当直线过A点时,两直线的交点在x轴,当直线l绕C点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D.10.答案:C解析一:由圆心在直线xy20上可以得到A、C满足条件,再把A点坐标(1,1)代入圆方程.A不满足条件.选C.解析二:设圆心C的坐标为(a,b),半径为r,因为圆心C在直线x+y2=0上,b=2a.由|CA|=|CB|,得(a1)2+(b+1)2=(a+1)2+(b1)2,解得a=1,b=1因此所求圆的方程为(x1)2+(y1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.11.答案:C解析:直线x=1垂直于x轴,其倾斜角为90°.12.答案:A解析:由已知得点A(1,0)、P(2,3)、B(5,0),可得直线PB的方程是x+y5=0.评述:本题考查直线方程的概念及直线的几何特征.13.答案:B解析一:设P=1+bi,则Q=P(±i),Q=(1+bi)(±i)=±bi,y=±1解析二:设P、Q点坐标分别为(1,t),(x,y),OPOQ,·=1,得x+ty=0|OP|=|OQ|,得x2+y2=t2+1由得t=,将其代入,得x2+y2=+1,(x2+y2)(1)=0.x2+y20,1=0,得y=±1.动点Q的轨迹为y=±1,为两条平行线.评述:本题考查动点轨迹的基本求法.14.答案:B解析:点(x,y)关于x=y对称的点为(y,x),可知x2yxy21的曲线关于x=y对称15.答案:B解析:直线()x+y=3的斜率k1,直线x+()y=2的斜率k2,k1·k2116.答案:C解析一:圆x2y24x30化为标准式(x+2)2y21,圆心C(2,0)设过原点的直线方程为y=kx,即kxy=0.由1,解得k=±,切点在第三象限,k0,所求直线方程为y=x图75解析二:设T为切点,因为圆心C(2,0),因此CT=1,OC=2,OCT为Rt.如图75,COT=30°,直线OT的方程为y=x.评述:本题考查直线与圆的位置关系,解法二利用数与形的完美结合,可迅速、准确得到结果.17.答案:C解析:直线l1的倾斜角为,依题意l2的倾斜角的取值范围为(,)(,+)即:(,)(,),从而l2的斜率k2的取值范围为:(,1)(1,).图76评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x+)2+(y)2=4如图76所示,故圆关于y=x对称故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y=x绕原点逆时针旋转30°所得的直线方程为:y=x.已知圆的圆心(2,0)到y=x的距离d=,又因圆的半径r=,故直线y=x与已知圆相切.图77评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系.20.答案:C 解析:如图77所示,由消y得:x23x+2=0x1=2,x2=1A(2,0),B(1,)|AB|=2又|OB|OA|=2AOB是等边三角形,AOB=,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB的倾斜角为120°.则等腰OAB的底角为60°.因此AOB=60°.更加体现出平面几何的意义.21.答案:A解法一:当两直线的斜率都存在时,·()1,A1A2B1B20.当一直线的斜率不存在,一直线的斜率为0时,同样适合A1A2B1B20,故选A.解法二:取特例验证排除.如直线x+y=0与xy=0垂直,A1A21,B1B21,可排除B、D.直线x=1与y=1垂直,A1A20,B1B20,可排除C,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a0,sinB0,两直线的斜率分别是k1=,k2=.由正弦定理知k1·k2=·=1,故两直线垂直.评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x1)2+y2=4表示以点(1,0)为圆心,2为半径的圆,x=a表示与x轴垂直且与圆相切的直线,而此时的切线方程分别为x=1和x=3,由于a>0,取a=3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题.24.答案:B解析一:若两直线平行,则,解得a6,故选B.解析二:利用代入法检验,也可判断B正确.评述:本题重点考查两条直线平行的条件,考查计算能力.图7825.答案:A解析:圆的标准方程为:(x1)2+(y2)2=5.圆过坐标原点.直线l将圆平分,也就是直线l过圆心C(1,2),从图78看到:当直线过圆心与x轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l在这两条直线之间变化时都不通过第四象限.当直线l过圆心与x轴平行时,k=0,当直线l过圆心与原点时,k=2.当k0,2时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法.26.答案:B解析:A中过点P0(x0,y0)与x轴垂直的直线x=x0不能用yy0=k(xx0)表示,因为其斜率k不存在;C中不过原点但在x轴或y轴无截距的直线y=b(b0)或x=a(a0)不能用方程=1表示;D中过A(0,b)的直线x=0不能用方程y=kx+b表示.评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围.27.答案:C 解析:将两圆方程分别配方得(x1)2y21和x2(y2)24,两圆圆心分别为O1(1,0),O2(0,2),r11,r22,|O1O2|,又1r2r1r1r23,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法.28.答案:D解析:直线l1的倾斜角1是钝角,故k10,直线l2与l3的倾斜角2、3均为锐角,且23,所以k2k30,因此k2k3k1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力.29.答案:B解析:直线方程可化为2xy=0,d=.评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y=x+3的倾斜角为60°,而y=1与x轴平行,所以y=1与y=x+3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a=4±解析:因过A(1,0)、B(0,2)的直线方程为:2xy+2=0.圆的圆心坐标为C(1,a),半径r=1.又圆和直线相切,因此,有:d=1,解得a=4±.评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识.32.答案:2解析:圆心到直线的距离d3动点Q到直线距离的最小值为dr312图7933.答案:2解法一:点P在直线3x+4y+8=0上.如图79.设P(x, x),C点坐标为(1,1),S四边形PACB2SPAC2··|AP|·|AC|AP|·|AC|AP|AP|2|PC|2|AC|2|PC|21当|PC|最小时,|AP|最小,四边形PACB的面积最小|PC|2(1x)2(12x)2|PC|min3 四边形PACB面积的最小值为2解法二:由法一知需求|PC|最小值,即求C到直线3x+4y+8=0的距离,C(1,1),|PC|=3,SPACD=2.34.答案:图710解法一:圆的圆心为(0,1)设切线的方程为yk(x2).如图710.kx2ky0 圆心到直线的距离为1解得k或k0,两切线交角的正切值为解法二:设两切线的交角为图711tan,tan35.答案:解析:圆的圆心为(1,0),如图711.当斜率存在时,设切线方程为ykx2kxy20圆心到切线的距离为1 k,即tan当斜率不存在时,直线x0是圆的切线又两切线的夹角为的余角两切线夹角的正切值为36.答案:F1(a,b)0,或F2(a,b)0,或F1(a,b)0且F2(a,b)0或C1C2=或PC1等解析:点P(a,b)C1C2,则可能点P不在曲线C1上;可能点P不在曲线C2上;可能点P既不在曲线C1上也不在曲线C2上;可能曲线C1与曲线C2不存在交点.37.答案:可得两圆对称轴的方程2(ca)x+2(db)y+a2+b2c2d2=0解析:设圆方程(xa)2(yb)2r2 (xc)2(yd)2r2 (ac或bd),则由,得两圆的对称轴方程为:(xa)2(xc)2+(yb)2(yd)2=0,即2(ca)x+2(db)y+a2+b2c2d2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x1)2+(y1)2=1解析一:设所求圆心为(a,b),半径为r.由已知,得a=b,r=|b|=|a|.所求方程为(xa)2+(ya)2=a2又知点(1,0)在所求圆上,有(1a)2+a2=a2,a=b=r=1.故所求圆的方程为:(x1)2+(y1)2=1.解析二:因为直线y=x与x轴夹角为45°.又圆与x轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r=1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果.39.答案:3或7解析:当两圆外切时,r=3,两圆内切时r=7,所以r的值是3或7评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义.40.答案:x+y4=0解析一:已知圆的方程为(x2)2+y2=9,可知圆心C的坐标是(2,0),又知AB弦的中点是P(3,1),所以kCP=1,而AB垂直CP,所以kAB=1.故直线AB的方程是x+y4=0.解析二:设所求直线方程为y1=k(x3).代入圆的方程,得关于x的二次方程:(1+k2)x2(6k22k+4)x+9k26k4=0,由韦达定理:x1+x2=6,解得k=1.解析三:设所求直线与圆交于A、B两点,其坐标分别为A(x1,y1)、B(x2,y2),则有得(x2+x14)(x2x1)+(y2y1)(y2+y1)=0又AB的中点坐标为(3,1),x1+x2=6,y1+y2=2.=1,即AB的斜率为1,故所求方程为x+y4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质.41.答案:(x+2)2+(y3)2=4解析:因为圆心为(2,3),且圆与y轴相切,所以圆的半径为2.故所求圆的方程为(x+2)2+(y3)2=4.42.解:设动点P的坐标为P(x,y)由=a(a>0),得=a,化简,得:(1a2)x2+2c(1+a2)x+c2(1a2)+(1a2)y2=0.当a1时,得x2+x+c2+y2=0.整理,得:(xc)2+y2=()2当a=1时,化简得x=0.所以当a1时,P点的轨迹是以(c,0)为圆心,|为半径的圆;当a=1时,P点的轨迹为y轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.()解法一,依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y2=4x.图712解法二:设M(x,y),依题意有|MP|=|MN|,所以|x+1|=.化简得:y2=4x.()(i)由题意得,直线AB的方程为y=(x1).由消y得3x210x+3=0,解得x1=,x2=3.所以A点坐标为(),B点坐标为(3,2),|AB|=x1+x2+2=.假设存在点C(1,y),使ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即由得42+(y+2)2=()2+(y)2,解得y=.但y=不符合,所以由,组成的方程组无解.因此,直线l上不存在点C,使得ABC是正三角形.(ii)解法一:设C(1,y)使ABC成钝角三角形,由得y=2,即当点C的坐标为(1,2)时,A、B、C三点共线,故y2.又|AC|2=(1)2+(y)2=+y2,|BC|2=(3+1)2+(y+2)2=28+4y+y2,|AB|2=()2=.当CAB为钝角时,cosA=<0.即|BC|2 >|AC|2+|AB|2,即,即y>时,CAB为钝角.当|AC|2>|BC|2+|AB|2,即,即y<时,CBA为钝角.又|AB|2>|AC|2+|BC|2,即,即.该不等式无解,所以ACB不可能为钝角.因此,当ABC为钝角三角形时,点C的纵坐标y的取值范围是.解法二:以AB为直径的圆的方程为(x)2+(y+)2=()2.圆心()到直线l:x=1的距离为,所以,以AB为直径的圆与直线l相切于点G(1,).当直线l上的C点与G重合时,ACB为直角,当C与G点不重合,且A、B、C三点不共线时,ACB为锐角,即ABC中,ACB不可能是钝角.因此,要使ABC为钝角三角形,只可能是CAB或CBA为钝角.过点A且与AB垂直的直线方程为.令x=1得y=.过点B且与AB垂直的直线方程为y+2(x3).令x=1得y=.又由解得y=2,所以,当点C的坐标为(1,2)时,A、B、C三点共线,不构成三角形.因此,当ABC为钝角三角形时,点C的纵坐标y的取值范围是y<或y>(y2).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P的坐标为(x,y),由题设有,即整理得 x2+y26x+1=0因为点N到PM的距离为1,|M|2,所以PMN30°,直线PM的斜率为±,直线PM的方程为y=±(x1)将式代入式整理得x24x10解得x2,x2代入式得点P的坐标为(2,1)或(2,1);(2,1)或(2,1)直线PN的方程为y=x1或y=x+145.解:设圆的方程为(xa)2+(yb)2=r2.令x=0,得y22by+b2+a2r2=0.|y1y2|=2,得r2=a2+1令y=0,得x22ax+a2+b2r2=0,|x1x2|=,得r2=2b2由、,得2b2a2=1又因为P(a,b)到直线x2y=0的距离为,得d=,即a2b=±1.综上可得或解得或于是r2=2b2=2.所求圆的方程为(x+1)2+(y+1)2=2或(x1)2+(y1)2=2.46.解:设所求圆的圆心为P(a,b),半径为r,则P到x轴、y轴的距离分别为|b|、|a|.由题设圆P截x轴所得劣弧所对圆心角为90°,圆P截x轴所得弦长为r,故r22b2,又圆P截y轴所得弦长为2,所以有r2a21,从而有2b2a21又点P(a,b)到直线x2y=0距离为d,所以5d2|a2b|2a24b24aba24b22(a2b2)2b2a21当且仅当a=b时上式等号成立,此时5d21,从而d取得最小值,由此有 解方程得或 由于r22b2,知r,于是所求圆的方程为(x1)2(y1)22或(x1)2(y1)22评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A、B的横坐标分别为x1,x2,由题设知x11,x21,点A(x1,log8x1),B(x2,log8x2).因为A、B在过点O的直线上,所以,又点C、D的坐标分别为(x1,log2x1),(x2,log2x2)由于log2x13log8x1,log2x23log8x2,所以OC的斜率和OD的斜率分别为.由此得kOCkOD,即O、C、D在同一条直线上.(2)解:由BC平行于x轴,有log2x1log8x2,解得 x2x13将其代入,得x13log8x13x1log8x1.由于x11,知log8x10,故x133x1,x1,于是点A的坐标为(,log8).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.图71348.解:(1)当12t0即0t时,如图713,点Q在第一象限时,此时S(t)为四边形OPQK的面积,直线QR的方程为y2=t(x+2t).令x=0,得y=2t22,点K的坐标为(P,2t22).图714当2t+10,即t时,如图714,点Q在y轴上或第二象限,S(t)为OP的面积,直线PQ的方程为yt=(x1),令x=0得y=t+,点L的坐标为(0,t+),SOPL所以S(t)(2)当0t时,对于任何0t1t2,有S(t1)S(t2)2(t2t1)1(t1t2)(t12t1t2t22)0,即S(t1)S(t2),所以S(t)在区间(0,)内是减函数.当t时,对于任何t1t2,有S(t1)S(t2)(t1t2)(1),所以若t1t21时,S(t1)S(t2);若1t1t2时,S(t1)S(t2),所以S(t)在区间,1上是减函数,在区间1,内是增函数,由21()2()3S()以及上面的证明过程可得,对于任何0t1t21,S(t2)S(t1),于是S(t)的单调区间分别为(0,1及1,且S(t)在(0,1内是减函数,在1,内是增函数.图71549.解:如图715,设直线MN切圆于N,则动点M组成的集合是:P=M|MN|=|MQ|,(>0为常数)因为圆的半径|ON|=1,所以|MN|2=|MO|2|ON|2=|MO|21.设点M的坐标为(x,y),则整理得(21)(x2+y2)42x+(1+42)=0当=1时,方程化为x=,它表示一条直线,该直线与x轴垂直,交x轴于点(,0);当1时,方程化为(x)2+y2=它表示圆心在(,0),半径为的圆.评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.专心-专注-专业