全等三角形证明中考题精选有答案解析(共8页).doc
-
资源ID:13714453
资源大小:217KB
全文页数:8页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
全等三角形证明中考题精选有答案解析(共8页).doc
精选优质文档-倾情为你奉上 七年级数学下-全等三角形证明题1如图,已知AD是ABC的中线,分别过点B、C作BEAD于点E,CFAD交AD的延长线于点F,求证:BE=CF2如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°(1)操作发现:如图2,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是_;设BDC的面积为S1,AEC的面积为S2,则S1与S2的数量关系是_ (2)猜想论证当DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC、CE边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60°,点D是角平分线上一点,BD=CD=4,DEAB交BC于点E(如图4)若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长3如图,把一个直角三角形ACB(ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H(1)求证:CF=DG;(2)求出FHG的度数 4如图所示,在ABC中,D、E分别是AB、AC上的点,DEBC,如图,然后将ADE绕A点顺时针旋转一定角度,得到图,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图,请解答下列问题:(1)若AB=AC,请探究下列数量关系:在图中,BD与CE的数量关系是_;在图中,猜想AM与AN的数量关系、MAN与BAC的数量关系,并证明你的猜想;(2)若AB=kAC(k1),按上述操作方法,得到图,请继续探究:AM与AN的数量关系、MAN与BAC的数量关系,直接写出你的猜想,不必证明4(1)如图,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90°当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;将图1中的ADE绕点A顺时针旋转角(0°90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由(2)当ABC和ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由甲:AB:AC=AD:AE=1,BAC=DAE90°;乙:AB:AC=AD:AE1,BAC=DAE=90°;丙:AB:AC=AD:AE1,BAC=DAE90° 6CD经过BCA顶点C的一条直线,CA=CBE,F分别是直线CD上两点,且BEC=CFA=(1)若直线CD经过BCA的内部,且E,F在射线CD上,请解决下面两个问题:如图1,若BCA=90°,=90°,则BE_CF;EF_|BEAF|(填“”,“”或“=”);如图2,若0°BCA180°,请添加一个关于与BCA关系的条件_,使中的两个结论仍然成立,并证明两个结论成立(2)如图3,若直线CD经过BCA的外部,=BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明) 7如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=mBD(m为正数),试猜想GE与GD有何关系(只写结论,不证明) 8(1)已知:如图,在AOB和COD中,OA=OB,OC=OD,AOB=COD=60°,求证:AC=BD;APB=60度;(2)如图,在AOB和COD中,若OA=OB,OC=OD,AOB=COD=,则AC与BD间的等量关系式为_;APB的大小为_;(3)如图,在AOB和COD中,若OA=kOB,OC=kOD(k1),AOB=COD=,则AC与BD间的等量关系式为_;APB的大小为 10已知:EGAF,AB=AC,DE=DF;求证:BE=CF参考答案与试题解析2解:(1)DEC绕点C旋转点D恰好落在AB边上,AC=CD,BAC=90°B=90°30°=60°,ACD是等边三角形,ACD=60°,又CDE=BAC=60°,ACD=CDE,DEAC;B=30°,C=90°,CD=AC=AB,BD=AD=AC,根据等边三角形的性质,ACD的边AC、AD上的高相等,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DEAC;S1=S2;(2)如图,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°90°=90°,ACN=DCM,在ACN和DCM中,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;3、解答:(1)证明:在CBF和DBG中,CBFDBG(SAS),CF=DG;(2)解:CBFDBG,BCF=BDG,又CFB=DFH,DHF=CBF=60°,FHG=180°DHF=180°60°=120°4、解答:解:(1)结论:BD=CE,BDCE;结论:BD=CE,BDCE;理由如下:BAC=DAE=90°BACDAC=DAEDAC,即BAD=CAE在ABD与ACE中, ABDACE(SAS)BD=CE延长BD交AC于F,交CE于H在ABF与HCF中,ABF=HCF,AFB=HFC;CHF=BAF=90°BDCE(2)结论:乙AB:AC=AD:AE,BAC=DAE=90°解答:解:(1)BD=CE;AM=AN,MAN=BAC,DAE=BAC,CAE=BAD,在BAD和CAE中CAEBAD(SAS),ACE=ABD,DM=BD,EN=CE,BM=CN,在ABM和ACN中,ABMACN(SAS),AM=AN,BAM=CAN,即MAN=BAC;(2)AM=kAN,MAN=BAC56解答:解:(1)BCA=90°,=90°,BCE+CBE=90°,BCE+ACF=90°,CBE=ACF,CA=CB,BEC=CFA;BCECAF,BE=CF;EF=|BEAF|所填的条件是:+BCA=180°证明:在BCE中,CBE+BCE=180°BEC=180°BCA=180°,CBE+BCE=BCA又ACF+BCE=BCA,CBE=ACF,又BC=CA,BEC=CFA,BCECAF(AAS)BE=CF,CE=AF,又EF=CFCE,EF=|BEAF|(2)EF=BE+AF7解答:证明:(1)过D作DFCE,交BC于F,则E=GDFAB=AC,ACB=ABCDFCE,DFB=ACB,DFB=ACB=ABCDF=DBCE=BD,DF=CE,在GDF和GEC中,GDFGEC(AAS)GE=GD(2)GE=mGD9解答:解:(1)AOB=COD=60°,AOB+BOC=COD+BOC即:AOC=BOD又OA=OB,OC=OD,AOCBODAC=BD由得:OAC=OBD,AEO=PEB,APB=180°(BEP+OBD),AOB=180°(OAC+AEO),APB=AOB=60°(2)AC=BD, (3)AC=kBD,180°山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。春风翻一页,桃花面,杏花眼,柳腰春细;夏阳读一页,蔷花满架,木槿锦绣、合欢幽香、蜀葵闲澹,一派峥嵘;秋风传一页,海棠妆欢,野菊淡姿,高远深邃;冬雪润一页,水仙临水一舞,腊梅素心磬口,向爱唱晚。专心-专注-专业