欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学人教版教案:必修5第三章《不等式》全章教案(共38页).doc

    • 资源ID:13718306       资源大小:1.48MB        全文页数:38页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学人教版教案:必修5第三章《不等式》全章教案(共38页).doc

    精选优质文档-倾情为你奉上第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.1不等式与不等关系第1课时授课类型:新授课【教学目标】1知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理解不等式(组)对于刻画不等关系的意义和价值。【教学难点】用不等式(组)正确表示出不等关系。【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不等式来表示不等关系。下面我们首先来看如何利用不等式来表示不等关系。2.讲授新课1)用不等式表示不等关系引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是用不等式组来表示问题1:设点A与平面的距离为d,B为平面上的任意一点,则。问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。按照生产的要求,600mm的数量不能超过500mm钢管的3倍。怎样写出满足所有上述不等关系的不等式呢?解:假设截得500 mm的钢管 x根,截得600mm的钢管y根。根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm ;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)截得两种钢管的数量都不能为负。要同时满足上述的三个不等关系,可以用下面的不等式组来表示:3.随堂练习1、试举几个现实生活中与不等式有关的例子。2、课本P82的练习1、24.课时小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。5.评价设计课本P83习题3.1A组第4、5题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )第2课时授课类型:新授课【教学目标】1知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力.【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式;【教学难点】利用不等式的性质证明简单的不等式。【教学过程】1.课题导入在初中,我们已经学习过不等式的一些基本性质。请同学们回忆初中不等式的的基本性质。(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变;即若(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变;即若(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。即若2.讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗?证明:1)(ac)(bc)ab0,acbc2), 实际上,我们还有,(证明:ab,bc,ab0,bc0根据两个正数的和仍是正数,得(ab)(bc)0,即ac0,ac于是,我们就得到了不等式的基本性质:(1)(2)(3)(4)2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质:(1);(2);(3)。证明:1)ab,acbc cd,bcbd 由、得 acbd2)3)反证法)假设,则:若这都与矛盾, 范例讲解:例1、已知求证 。证明:以为,所以ab>0,。于是 ,即由c<0 ,得3.随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号:(1)()2 2;(2)()2 (1)2;(3) ;(4)当ab0时,loga logb答案:(1) (2) (3) (4) 补充例题例2、比较(a3)(a)与(a2)(a4)的大小。分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)。根据实数运算的符号法则来得出两个代数式的大小。比较两个实数大小的问题转化为实数运算符号问题。解:由题意可知:(a3)(a)(a2)(a4)(a22a1)(a22a)0(a3)(a)(a2)(a4)随堂练习21、 比较大小:(1)(x)(x)与(x)2(2)4.课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论5.评价设计课本P83习题3.1A组第2、3题;B组第1题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.2一元二次不等式及其解法第1课时授课类型:新授课【教学目标】1知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:(1)2.讲授新课1)一元二次不等式的定义象这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:二次函数有两个零点:于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函数的图象,如图,观察函数图象,可知:当 x<0,或x>5时,函数图象位于x轴上方,此时,y>0,即;当0<x<5时,函数图象位于x轴下方,此时,y<0,即;所以,不等式的解集是,从而解决了本节开始时提出的问题。3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式: 一般地,怎样确定一元二次不等式>0与<0的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线与x轴的相关位置的情况,也就是一元二次方程=0的根的情况(2)抛物线的开口方向,也就是a的符号总结讨论结果:(l)抛物线 (a> 0)与 x轴的相关位置,分为三种情况,这可以由一元二次方程 =0的判别式三种取值情况(> 0,=0,<0)来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分>O,=0,<0三种情况,得到一元二次不等式>0与<0的解集一元二次不等式的解集:设相应的一元二次方程的两根为,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格) 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R 范例讲解例2 (课本第87页)求不等式的解集.解:因为.所以,原不等式的解集是例3 (课本第88页)解不等式.解:整理,得.因为无实数解,所以不等式的解集是.从而,原不等式的解集是.3.随堂练习课本第89的练习1(1)、(3)、(5)、(7)4.课时小结解一元二次不等式的步骤: 将二次项系数化为“+”:A=>0(或<0)(a>0) 计算判别式,分析不等式的解的情况:.>0时,求根<,.=0时,求根,.<0时,方程无解, 写出解集.5.评价设计课本第89页习题3.2A组第1题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.2一元二次不等式及其解法第2课时授课类型:新授课【教学目标】1知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系【教学过程】1.课题导入1一元二次方程、一元二次不等式与二次函数的关系2一元二次不等式的解法步骤课本第86页的表格2.讲授新课范例讲解例1某种牌号的汽车在水泥路面上的刹车距离s m和汽车的速度 x km/h有如下的关系:在一次交通事故中,测得这种车的刹车距离大于39.5m,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h)解:设这辆汽车刹车前的速度至少为x km/h,根据题意,我们得到移项整理得:显然 ,方程有两个实数根,即。所以不等式的解集为在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x辆摩托车,根据题意,我们得到移项整理,得因为,所以方程有两个实数根由二次函数的图象,得不等式的解为:50<x<60因为x只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在5159辆之间时,这家工厂能够获得6000元以上的收益。3随堂练习1课本第89页练习2补充例题 应用一(一元二次不等式与一元二次方程的关系) 例:设不等式的解集为,求? 应用二(一元二次不等式与二次函数的关系)例:设,且,求的取值范围.改:设对于一切都成立,求的范围.改:若方程有两个实根,且,求的范围.随堂练习21、已知二次不等式的解集为,求关于的不等式的解集.2、若关于的不等式的解集为空集,求的取值范围.改1:解集非空改2:解集为一切实数4.课时小结进一步熟练掌握一元二次不等式的解法一元二次不等式与一元二次方程以及一元二次函数的关系5.评价设计课本第89页的习题3.2A组第3、5题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.3.1二元一次不等式(组)与平面区域第1课时授课类型:新授课【教学目标】1知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。【教学重点】用二元一次不等式(组)表示平面区域;【教学难点】【教学过程】1.课题导入1从实际问题中抽象出二元一次不等式(组)的数学模型课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程。在获得探究体验的基础上,通过交流形成共识:2.讲授新课1建立二元一次不等式模型把实际问题 数学问题:设用于企业贷款的资金为x元,用于个人贷款的资金为y元。(把文字语言 符号语言)(资金总数为25 000 000元) (1)(预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上) 即 (2)(用于企业和个人贷款的资金数额都不能是负值) (3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:2二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。3.探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y<6的解集所表示的图形。如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,横坐标x-3-2-10123点P的纵坐标点A的纵坐标并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图。直线叫做这两个区域的边界由特殊例子推广到一般情况:(3)结论:二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把它的坐标()代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)【应用举例】例1 画出不等式表示的平面区域。解:先画直线(画成虚线).取原点(0,0),代入+4y-4,0+4×0-4=-40,原点在表示的平面区域内,不等式表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当时,常把原点作为此特殊点。变式1、画出不等式所表示的平面区域。变式2、画出不等式所表示的平面区域。例2 用平面区域表示.不等式组的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式表示直线右下方的区域,表示直线右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。变式1、画出不等式表示的平面区域。变式2、由直线,和围成的三角形区域(包括边界)用不等式可表示为 。3.随堂练习1、课本第97页的练习1、2、34.课时小结1二元一次不等式表示的平面区域2二元一次不等式表示哪个平面区域的判断方法3二元一次不等式组表示的平面区域5.评价设计课本第105页习题3.3A组的第1题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.3.1二元一次不等式(组)与平面区域第2课时授课类型:新授课【教学目标】1知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域。【教学过程】1.课题导入复习引入二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)。随堂练习11、画出不等式2+y-60表示的平面区域.2、画出不等式组表示的平面区域。2.讲授新课【应用举例】例3 某人准备投资 1 200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段班级学生人数配备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述的限制条件。解:设开设初中班x个,开设高中班y个,根据题意,总共招生班数应限制在20-30之间,所以有考虑到所投资金的限制,得到即 另外,开设的班数不能为负,则把上面的四个不等式合在一起,得到:用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t、硝酸盐66t,在此基础上生产两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。解:设x,y分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:在直角坐标系中可表示成如图的平面区域(阴影部分)。补充例题例1、画出下列不等式表示的区域(1) ; (2) 分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由,得,又用代,不等式仍成立,区域关于轴对称。解:(1)或矛盾无解,故点在一带形区域内(含边界)。(2) 由,得;当时,有点在一条形区域内(边界);当,由对称性得出。指出:把非规范形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组的整数解分析:不等式组的实数解集为三条直线,所围成的三角形区域内部(不含边界)。设,求得区域内点横坐标范围,取出的所有整数值,再代回原不等式组转化为的一元不等式组得出相应的的整数值。解:设,。于是看出区域内点的横坐标在内,取1,2,3,当1时,代入原不等式组有,得2,区域内有整点(1,-2)。同理可求得另外三个整点(2,0),(2,-1),(3,-1)。指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫。常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标的范围,确定的所有整数值,再代回原不等式组,得出的一元一次不等式组,再确定的所有整数值,即先固定,再用制约。3.随堂练习21(1); (2); (3)2画出不等式组表示的平面区域3课本第97页的练习44.课时小结进一步熟悉用不等式(组)的解集表示的平面区域。5.评价设计1、课本第105页习题3.3B组的第1、2题【板书设计】【授后记】 第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.3.2简单的线性规划第3课时授课类型:新授课【教学目标】1知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。【教学重点】用图解法解决简单的线性规划问题【教学难点】准确求得线性规划问题的最优解【教学过程】1.课题导入复习提问1、二元一次不等式在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组: .(1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为,这是斜率为,在y轴上的截距为的直线。当z变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2),就能确定一条直线(),这说明,截距可以由平面内的一个点的坐标唯一确定。可以看到,直线与不等式组(1)的区域的交点满足不等式组(1),而且当截距最大时,z取得最大值。因此,问题可以转化为当直线与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时截距最大。(5)获得结果:由上图可以看出,当实现金国直线x=4与直线x+2y-8=0的交点M(4,2)时,截距的值最大,最大值为,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。2、线性规划的有关概念:线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件线性目标函数:关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解由所有可行解组成的集合叫做可行域使目标函数取得最大或最小值的可行解叫线性规划问题的最优解3、 变换条件,加深理解探究:课本第100页的探究活动(1) 在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,有应当如何安排生产才能获得最大利润?在换几组数据试试。(2) 有上述过程,你能得出最优解与可行域之间的关系吗?3.随堂练习1请同学们结合课本P103练习1来掌握图解法解决简单的线性规划问题.(1)求z=2x+y的最大值,使式中的x、y 满足约束条件解:不等式组表示的平面区域如图所示:当x=0,y=0时,z=2x+y=0点(0,0)在直线:2x+y=0上.作一组与直线平行的直线:2x+y=t,tR. 可知,在经过不等式组所表示的公共区域内的点且平行于的直线中,以经过点A(2,-1)的直线所对应的t最大.所以zmax=2×2-1=3.(2)求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件解:不等式组所表示的平面区域如图所示:从

    注意事项

    本文(高中数学人教版教案:必修5第三章《不等式》全章教案(共38页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开