拉普拉斯(Laplace)定理-行列式的乘法规则(共3页).doc
-
资源ID:13734411
资源大小:124.50KB
全文页数:3页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
拉普拉斯(Laplace)定理-行列式的乘法规则(共3页).doc
精选优质文档-倾情为你奉上§8 拉普拉斯(Laplace)定理 行列式的乘法规则一、拉普拉斯定理定义9 在一个级行列式中任意选定行列(),位于这些行和列的交点上的个元素按照原来的次序组成一个级行列式,称为行列式的一个级子式.在中划去这行列后余下的元素按照原来的次序组成的级行列式称为级子式的余子式.从定义立刻看出,也是的余子式.所以和可以称为的一对互余的子式.例1 在四级行列式中选定第一、三行,第二、四列得到一个二级子式:,的余子式为.例2 在五级行列式中和是一对互余的子式.定义10 设的级子式在中所在的行、列指标分别是,则的余子式前面加上符号后称做的代数余子式.因为与位于行列式中不同的行和不同的列,所以有下述引理 行列式的任一个子式与它的代数余子式的乘积中的每一项都是行列式的展开式中的一项,而且符号也一致.定理6(拉普拉斯定理) 设在行列式中任意取定了()个行.由这行元素所组成的一切级子式与它们的代数余子式的乘积的和等于行列式.例3 利用拉普拉斯定理计算行列式从这个例子来看,利用拉普拉斯定理来计算行列式一般是不方便的.这个定理主要是理论方面的应用.二、行列式的乘积法则定理7 两个级行列式和的乘积等于一个级行列式,其中是的第行元素分别与的第列的对应元素乘积之和:.这个定理也称为行列式的乘法定理.它的意义到第四章§3中就完全清楚了.专心-专注-专业