欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    历届数学高考试题精选——导数及其应用(共50页).doc

    • 资源ID:13758529       资源大小:2.26MB        全文页数:50页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    历届数学高考试题精选——导数及其应用(共50页).doc

    精选优质文档-倾情为你奉上历届高考中的“导数”试题精选(文科自我测试)一、选择题:(每小题5分,计50分)1.(2005全国卷文)函数,已知在时取得极值,则=( ) (A)2(B)3(C)4(D)52(2008海南、宁夏文)设,若,则( )A. B. C. D. 3(2005广东)函数是减函数的区间为( )A B C D(0,2)4.(2008安徽文)设函数 则( )A有最大值 B有最小值 C是增函数D是减函数5(2007福建文、理)已知对任意实数x有f(x)=f(x),g(-x)=g(x),且x>0时,f(x)>0,g(x)>0,则x<0时( )A f(x)>0,g(x)>0 B f(x)>0,g(x)<0C f(x)<0,g(x)>0 D f(x)<0,g(x)<06.(2008全国卷文)设曲线在点(1,)处的切线与直线平行,则( )A1 B C D7(2006浙江文)在区间上的最大值是( )(A)-2 (B)0 (C)2 (D)4xyoAxyoDxyoCxyoB8(2004湖南文科)若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数f /(x)的图象是( )9(2004全国卷理科)函数yxcosxsinx在下面哪个区间内是增函数( )(A)(,)(B)(,2)(C)(,)(D)(2,3)10.(2004浙江理科)设是函数f(x)的导函数,y=的图象如图所示,则y= f(x)的图象最有可能的是( )二、填空题:(每小题5分,计20分)11.(2007浙江文)曲线在点(1,一3)处的切线方程是_.12.(2005重庆文科)曲线在点(1,1)处的切线与x轴、直线所围成的三角形的面积为 . 13(2007江苏)已知函数在区间上的最大值与最小值分别为,则_;14.(2008北京文)如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0)= _ ; 函数f(x)在x=1处的导数f(1)= _三、解答题:(15,16小题各12分,其余各小题各14分)15.(2005北京理科、文科) 已知函数f(x)= x33x29xa. (I)求f(x)的单调递减区间;(II)若f(x)在区间2,2上的最大值为20,求它在该区间上的最小值16.(2006安徽文)设函数,已知是奇函数。()求、的值。 ()求的单调区间与极值。.(2005福建文科)已知函数的图象过点P(0,2),且在点M(1,f(1)处的切线方程为. ()求函数的解析式; ()求函数的单调区间.(2007重庆文)用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?(2008全国卷文) 设,()若是函数的极值点,求的值;()若函数,在处取得最大值,求的取值范围20. (2008湖北文) 已知函数(m为常数,且m>0)有极大值9. ()求m的值; ()若斜率为-5的直线是曲线的切线,求此直线方程.历届高考中的“导数”试题精选(文科自我测试) 参考答案一. 选择题:(每小题5分,计50分)二、填空题:(每小题5分,计20分)11. ; 12. ;13. 32 ;14. 2 , -2 .三、解答题:(15,16小题各12分,其余各小题各14分)15. 解:(I) f (x)3x26x9令f (x)<0,解得x<1或x>3, 所以函数f(x)的单调递减区间为(,1),(3,) (II)因为f(2)81218a=2a,f(2)81218a22a, 所以f(2)>f(2)因为在(1,3)上f (x)>0,所以f(x)在1, 2上单调递增,又由于f(x)在2,1上单调递减,因此f(2)和f(1)分别是f(x)在区间2,2上的最大值和最小值,于是有 22a20,解得 a2 故f(x)=x33x29x2,因此f(1)13927, 即函数f(x)在区间2,2上的最小值为716.解(),。从而是一个奇函数,所以得,由奇函数定义得;()由()知,从而,由此可知,和是函数是单调递增区间;是函数是单调递减区间;在时,取得极大值,极大值为,在时,取得极小值,极小值为。17.解:()由的图象过点P(0,2),d=2知,所以 ,(x)=3x2+2bx+c,由在(-1,(-1)处的切线方程是6x-y+7=0,知-6-f(-1)+7=0,即f(-1)=1, (-1)=6,即解得b=c=-3.故所求的解析式为f(x)=x3-3x2-3x+2,() (x)=3x2-6x-3,令3x2-6x-3=0即x2-2x-1=0,解得x1=1-,x2=1+,当x<1-或x>1+时, (x)>0;当1-<x<1+时, (x)<0f(x)=x3-3x2-3x+2在(1+,+)内是增函数,在(-, 1-)内是增函数,在(1-,1+)内是减函数.18.解:设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。解:()因为是的极值点,所以,即,因此经验证,当时,是函数的极值点()由题设,当在区间上的最大值为时,对一切都成立,解法一:即对一切都成立令,则由,可知在上单调递减,所以, 故a的取值范围是 解法二:也即对一切都成立, (1)当a=0时,-3x-6<0在上成立; (2)当时,抛物线的对称轴为,当a<0时,有h(0)= -6<0, 所以h(x)在上单调递减,h(x) <0恒成立;当a>0时,因为h(0)= -6<0,所以要使h(x)0在上恒成立,只需h(2) 0成立即可,解得a;综上,的取值范围为20.解:() f(x)3x2+2mxm2=(x+m)(3xm)=0,则x=m或x=m, 当x变化时,f(x)与f(x)的变化情况如下表:x(,m)m(m,)(,+)f(x)+00+f (x)极大值极小值从而可知,当x=m时,函数f(x)取得极大值9,即f(m)m3+m3+m3+1=9,m2.()由()知,f(x)=x3+2x24x+1,依题意知f(x)3x24x45,x1或x. 又f(1)6,f(),所以切线方程为y65(x1),或y5(x),即5xy10,或135x27y230.历届高考中的“导数”试题精选(理科自我测试)一、选择题:(每小题5分,计50分)1(2004湖北理科)函数有极值的充要条件是( )(A) (B) (C) (D)2.(2007全国理)已知曲线的一条切线的斜率为,则切点的横坐标为( )(A)3(B)2(C) 1(D) 3.(2005湖南理)设f0(x)sinx,f1(x)f0(x),f2(x)f1(x),fn1(x)fn(x),nN,则f2005(x)()A、sinxB、sinxC、cosxD、cosx4.(2008广东理)设,若函数,有大于零的极值点,则( )A B. C. D. 5(2001江西、山西、天津理科)函数有( )(A)极小值1,极大值1 (B)极小值2,极大值3(C)极小值2,极大值2 (D)极小值1,极大值36(2004湖南理科)设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0时,0.且,.则不等式f(x)g(x)0的解集是( )(A) (B)(C) (D)7.(2007海南、宁夏理)曲线在点处的切线与坐标轴所围三角形的面积为()8. (2008湖北理)若f(x)=上是减函数,则b的取值范围是( )A.-1,+ B.(-1,+) C. D.(-,-1)9(2005江西理科)已知函数的图像如右图所示(其中是函数,下面四个图象中的图象大致是 ( ) A B C D10.(2000江西、天津理科)右图中阴影部分的面积是( ) (A) (B) (C) (D)二、填空题:(每小题5分,计20分)11.(2007湖北文)已知函数的图象在M(1,f(1)处的切线方程是+2,f(1)f(1)=_.12(2007湖南理)函数在区间上的最小值是 13.(2008全国卷理)设曲线在点处的切线与直线垂直,则 _ 14(2006湖北文)半径为r的圆的面积S(r)r2,周长C(r)=2r,若将r看作(0,)上的变量,则2r , 式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。对于半径为R的球,若将R看作(0,)上的变量,请你写出类似于的式子: 式可以用语言叙述为: 。三、解答题:(15,16小题各12分,其余各小题各14分)15.(2004重庆文)某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元)。问该产每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入成本)16.(2008重庆文) 设函数若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求: ()a的值; ()函数f(x)的单调区间.17(2008全国卷文、理)已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围18(2004浙江理)设曲线0)在点M(t, )处的切线与x轴y轴所围成的三角形面积为S(t)。 ()求切线的方程; ()求S(t)的最大值。19(2007海南、宁夏文)设函数()讨论的单调性; ()求在区间的最大值和最小值20.(2007安徽理)设a0,f (x)=x1ln2 x2a ln x(x>0).()令F(x)xf(x),讨论F(x)在(0.)内的单调性并求极值;()求证:当x>1时,恒有x>ln2x2a ln x1.历届高考中的“导数”试题精选(理科自我测试)参考答案一、选择题:(每小题5分,计50分)二、填空题:(每小题5分,计20分)11. 3 ; 12; 13. 2 ; 14. ,球的体积函数的导数等于球的表面积函数三、解答题:(15,16小题各12分,其余各小题各14分)15. 解:每月生产x吨时的利润为 ,故它就是最大值点,且最大值为: 答:每月生产200吨产品时利润达到最大,最大利润为315万元.16. 解:()因为, 所以 即当 因斜率最小的切线与平行,即该切线的斜率为-12, 所以 解得 ()由()知 17解:(1) 求导:当时,, 在上递增当,求得两根为即在递增, 递减, 递增(2)要使f(x)在在区间内是减函数,当且仅当,在恒成立,由的图像可知,只需,即, 解得。a2。所以,的取值范围。18.解:()因为 所以切线的斜率为故切线的方程为即。()令y= 0得x=t+1, x=0得所以S(t)=从而当(0,1)时,>0, 当(1,+)时,<0,所以S(t)的最大值为S(1)=。19解:的定义域为()当时,;当时,;当时,从而,分别在区间,单调增加,在区间单调减少()由()知在区间的最小值为又所以在区间的最大值为20.()解:根据求导法则得故 于是列表如下:x (0,2) 2 (2,+)F(x) - 0 +F(x) 极小值F(2) 故知F(x)在(0,2)内是减函数,在(2,+)内是增函数,所以,在x2处取得极小值F(2)2-2In2+2a.()证明:由于是由上表知,对一切从而当所以当故当1.(2010 ·海南高考·理科T3)曲线在点处的切线方程为( )(A) (B) (C) (D)【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选A.因为 ,所以,在点处的切线斜率,所以,切线方程为,即,故选A.2.(2010·山东高考文科·8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为( )(A) 13万件 (B) 11万件(C) 9万件 (D) 7万件【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力.【思路点拨】利用导数求函数的最值.【规范解答】选C,,令得或(舍去),当时;当时,故当时函数有极大值,也是最大值,故选C.3.(2010·山东高考理科·7)由曲线y=,y=围成的封闭图形面积为( )(A)(B) (C) (D) 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积,考查了考生的想象能力、推理论证能力和运算求解能力. 【思路点拨】先求出曲线y=,y=的交点坐标,再利用定积分求面积. 【规范解答】选A,由题意得: 曲线y=,y=的交点坐标为(0,0),(1,1),故所求封闭图形的面积为,故选A.4.(2010·辽宁高考理科·10)已知点P在曲线y=上,为曲线在点P处的切线的倾斜角,则的取值范围是( ) (A)0,) (B) (D) 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。【思路点拨】先求导数的值域,即tan的范围,再根据正切函数的性质求的范围。【规范解答】选D.5.(2010·湖南高考理科·4)等于( )A、 B、 C、 D、【命题立意】考查积分的概念和基本运算.【思路点拨】记住的原函数.【规范解答】选D .=(lnx+c)|42=(ln4+c)-(ln2+c)=ln2.【方法技巧】关键是记住被积函数的原函数.6.(2010·江苏高考·8)函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是_【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。【思路点拨】先由导数的几何意义求得函数y=x2(x>0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。【规范解答】由y=x2(x>0)得,所以函数y=x2(x>0)在点(ak,ak2)处的切线方程为:当时,解得,所以.【答案】217.(2010·江苏高考·4)将边长为1m正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记,则S的最小值是_ _。【命题立意】 本题考查函数中的建模在实际问题中的应用,以及等价转化思想。【思路点拨】可设剪成的小正三角形的边长为,然后用分别表示梯形的周长和面积,从而将S用x表示,利用函数的观点解决.【规范解答】设剪成的小正三角形的边长为,则:方法一:利用导数的方法求最小值。,当时,递减;当时,递增;故当时,S的最小值是。方法二:利用函数的方法求最小值令,则:故当时,S的最小值是。【答案】【方法技巧】函数的最值是函数最重要的性质之一,高考不但在填空题中考查,还会在应用题、函数导数的的综合解答题中考察。高中阶段,常见的求函数的最值的常用方法有:换元法、有界性法、数形结合法、导数法和基本不等式法。8.(2010·陕西高考理科·3)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为 ;【命题立意】本题考查积分、几何概率的简单运算,属送分题。【思路点拨】由积分求出阴影部分的面积即可【规范解答】阴影部分的面积为所以点M取自阴影部分的概率为答案:9(2010 ·海南高考·理科T13)设y=f(x)为区间0,1上的连续函数,且恒有0f(x) 1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间0,1上的均匀随机数,和,由此得到N个点(i=1,2,N),在数出其中满足(i=1,2,N)的点数,那么由随机模拟方法可得积分的近似值为 .【命题立意】本题主要考查了定积分的几何意义以及几何概型的计算公式.【思路点拨】由随机模拟想到几何概型,然后结合定积分的几何意义进行求解.【规范解答】由题意可知,所有取值构成的区域是一个边长为1的正方形,而满足的点落在y=f(x)、以及、围成的区域内,由几何概型的计算公式可知的近似值为.答案:10.(2010·北京高考理科·8)已知函数()=In(1+)-+, (0)。()当=2时,求曲线=()在点(1,(1)处的切线方程;()求()的单调区间。【命题立意】本题考查了导数的应用,考查利用导数求切线方程及单调区间。解决本题时一个易错点是忽视定义域。【思路点拨】(1)求出,再代入点斜式方程即可得到切线方程;(2)由讨论的正负,从而确定单调区间。【规范解答】(I)当时, 由于, 所以曲线在点处的切线方程为 即 (II),.当时,.所以,在区间上,;在区间上,.故的单调递增区间是,单调递减区间是.当时,由,得,所以,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.当时,故的单调递增区间是.当时,得,.所以在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是【方法技巧】(1)过的切线方程为。(2)求单调区间时要在定义域内讨论内的正负。11.(2010·安徽高考文科·20)设函数,求函数的单调区间与极值。【命题立意】本题主要考查导数的运算,利用导数研究函数的单调性与极值的方法,考查考生运算能力、综合分析问题能力和问题的化归转化能力。【思路点拨】对函数求导,分析导数的符号情况,从而确定的单调区间和极值。【规范解答】+-0+极大值极小值【方法技巧】利用导数研究函数的单调性和极值是解决函数单调性、极值问题的常用方法,简单易行,具体操作流程如下:(1)求导数;(2)求方程的全部实根;(3)列表,检查在方程的根左、右的值的符号;(4)判断单调区间和极值。12.(2010·北京高考文科·8) 设定函数,且方程的两个根分别为1,4。()当a=3且曲线过原点时,求的解析式;()若在无极值点,求a的取值范围。【命题立意】本题考查了导数的求法,函数的极值,二次函数等知识。【思路点拨】(1)由的两个根及过原点,列出三个方程可解出;(2)是开口向上的二次函数,无极值点,则恒成立。【规范解答】由 得 因为的两个根分别为1,4,所以 (*)()当时,(*)式为解得又因为曲线过原点,所以故()由于a>0,所以“在(-,+)内无极值点”等价于“在(-,+)内恒成立”。由(*)式得。又解 得即的取值范围【方法技巧】(1)当在的左侧为正,右侧为负时,为极大值点;当在的左侧为负,右侧为正时,为极小值点(2)二次函数恒成立问题可利用开口方向与判别式来解决。恒大于0,则;恒小于0,则;13.(2010·安徽高考理科·17)设为实数,函数。 (1)求的单调区间与极值;(2)求证:当且时,。【命题立意】本题主要考查导数的运算,利用导数研究函数的单调区间、求函数的极值、证明函数不等式,考查考生运算能力、综合分析问题能力和问题的化归转化能力。【思路点拨】(1)先分析的导数的符号情况,从而确定的单调区间和极值;(2) 设,把问题转化为:求证:当且时,。【规范解答】(1),令,得,极小值在上单调递减,在上单调递增;当时,取得极小值为(2)设,由(1)问可知,恒成立,当时,则0恒成立,所以在上单调递增,所以当时,即当且时,。【方法技巧】1、利用导数研究函数的单调性是解决函数单调性问题的常用方法,简单易行;2、证明函数不等式问题,如证,通常令,转化为证明:。14.(2010·天津高考文科·20)已知函数f(x)=,其中a>0. ()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)>0恒成立,求a的取值范围.【命题立意】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法。【思路点拨】应用导数知识求解曲线的切线方程及函数最值。【规范解答】()当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()f(x)=.令f(x)=0,解得x=0或x=.以下分两种情况讨论:若,当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-f(x)极大值 当等价于 解不等式组得-5<a<5.因此.若a>2,则.当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-0+f(x)极大值极小值当时,f(x)>0等价于即解不等式组得或.因此2<a<5. 综合(1)和(2),可知a的取值范围为0<a<5.15.(2010·山东高考文科·21)已知函数(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.【命题立意】本题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力.考查分类讨论思想、数形结合思想和等价变换思想.【思路点拨】(1)根据导数的几何意义求出曲线在点处的切线的斜率;(2)直接利用函数与导数的关系讨论函数的单调性,同时应注意分类标准的选择.【规范解答】(1) 当所以 因此, ,即曲线又所以曲线(2)因为,所以 ,令当时,所以 当时,>0,此时,函数单调递减;当时,<0,此时,函数单调递增.当时,由,即 ,解得. 当时, , 恒成立,此时,函数在(0,+)上单调递减; 当时, ,时,,此时,函数单调递减时,<0,此时,函数单调递增时,此时,函数单调递减 当时,由于,时,,此时,函数单调递减:时,<0,此时,函数单调递增.综上所述:当时,函数在上单调递减;函数在上单调递增当时,函数在上单调递减当时,函数在上单调递减;函数 在上单调递增; 函数在上单调递减.【方法技巧】1、分类讨论的原因(1)某些概念、性质、法则、公式分类定义或分类给出;(2)数的运算:如除法运算中除式不为零,在实数集内偶次方根的被开方数为非负数,对数中真数与底数的要求,不等式两边同乘以一个正数还是负数等;(3)含参数的函数、方程、不等式等问题,由参数值的不同而导致结果发生改变;(4)在研究几何问题时,由于图形的变化(图形位置不确定或形状不确定),引起问题的结果有多种可能.2、分类讨论的原则(1)要有明确的分类标准;(2)对讨论对象分类时要不重复、不遗漏;(3)当讨论的对象不止一种时,应分层次进行.3、分类讨论的一般步骤(1)明确讨论对象,确定对象的范围;(2)确定统一的分类标准,进行合理分类,做到不重不漏;(3)逐段逐类讨论,获得阶段性结果;(4)归纳总结,得出结论.16. (2010·陕西高考文科·2)已知函数()若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;()设函数,当存在最小值时,求其最小值的解析式;()对()中的,证明:当时,【命题立意】本题将导数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值问题,考查了分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。【思路点拨】曲线与在交点处有相同的切线交点坐标的值及该切线的方程;利用导数法求的最小值的解析式利用基本不等式证明()【规范解答】() 两条曲线交点的坐标为(e2,e),切线的斜率为所以切线的方程为()由已知条件知当>0时,令,解得=,所以当0 < < 时,h(x)在(0,)上递减;当x>时,在上递增。所以x=是在(0, + )上的唯一极致点,且是极小值点,从而也是的最小值点。(2)当a     0时,在(0,+)递增,无最小值。故()由()知由由所以所以又所以当时,17.(2010·陕西高考理科·2)已知函数 ()若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;()设函数,当存在最小值时,求其最小值的解析式;()对()中的和任意的,证明:【命题立意】本题将导数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值问题,考查了分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。【思路点拨】曲线与在交点处有相同的切线交点坐标的值及该切线的方程;由利用导数法求的最小值的解析式利用基本不等式证明()【规范解答】() 两条曲线交点的坐标为(e2,e),切线的斜率为所以切线的方程为()由已知条件知当>0时,令,解得=,所以当0 < < 时,h(x)在(0,)上递减;当x>时,在上递增。所以x=是在(0, + )上的唯一极致点,且是极小值点,从而也是的最小值点。(2)当a     0时,在(0,+)递增,无最小值。故()由()知综上可得:【方法技巧】不等式的证明方法1证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点2在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的18.(2010·湖南高考理科·4)已知函数对任意的,恒有。()证明:当时,;()若对满足题设条件的任意b,c,不等式恒成立,求M的最小值.知识点检索号新课标:4【命题立意】以二次函数为载体,考查导数,不等式的证明,消元等知识。认真的考查了等价转化的思想.【思路点拨】(1)在对任意的,恒有下可以得到b,c的关系,目标是证明当时,其实是寻找条件和目标的关系,连接的纽带是b和c的关系.(2)恒成立,转化为求函数的最值,而且是二元函数的最值的求法,没有等式的条件下常常用整体消元.【规范解答】(1)易知f(x)=2x+b.由题设,对任意的x恒成立,所以(b-2)2+-4(c-b)0,从而c于是c1,且c|b|,因此2c-b=c+(c-b)>0.故当x0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)0.即当x0时,.(2)由(1)知,c|b|时,有M当c=|b|时,由(1)知,b=±2,c=2.此时f(c)-f(b)=-8或0,c2-b2=0,从而f(c)-f(b).综上所述,M的最小值为.【方法技巧】求最值是高考中重点也是难点。解题的思路是,首先看变量的个数,如果是三个变量常有三条路,一是利用柯西不等式、均值不等式和排序不等式,二是消元转化为二元再转化为一元,三是有时利用几何背景解题。如果是两个变量常常有三条路可走,一是利用柯西不等式、均值不等式,二是消元转化为一元函数,三是如果条件是不等式,常常也可以数学规划.如果是一个变量,常用方法:基本函数模型,单调性法和导数法.19.(2010·辽宁高考文科·21)已知函数f(x)=(a+1)lnx+ax2+1.()讨论函数f(x)的单调性;()设a-2,证明:对任意x2,x2(0,+),|f(x1)-f(x2)|4|x1-x2|.【命题立意】本题考查了函数的单调性与导数,求参数的取值范围,考查了分类讨论、转化等思想方法以及运算推理能力。【思路点拨】(I)求导数,对参数分类,讨论导数的符号,判断单调性, (II)转化为等价命题,构造新函数g(x)=f(x)+4x,通过g(x)r的单调性证明。【规范解答】【方法技巧】讨论函数的单调性首先要明确函数的定义域,一般用导数的方法,对参数分类做到不重不漏。2、直接证明一个命题,不好证时可考虑证明它的等价命题。20.(2010·辽宁高考理科·21)已知函数(I)讨论函数的单调性;(II)设.如果对任意,求的取值范围。【命题立意】本题考查了函数的单调性与导数,求参数的取值范围,考查了分类讨论、转化等思想方法以及运算能力。【思路点拨】(I)求导数,对参数分类,讨论导数的符号,判断单调性, (II)转化为等价命题,构造新函数g(x)=f(x)+4x,分离参数,求a的范围。【规范解答】【方法技巧】讨论函数的单调性首先要明确函数的定义域,一般用导数的方法,对参数分类做到不重不漏。求参数的取值范围往往要分离变量,分离时一定要使分离后的式子有意义,如分母不为0等。直接证明一个命题,不好证时可考虑证明它的等价命题。21.(2010·天津高考理科·2)已知函数()求函数的单调区间和极值;()已知函数的图象与函数的图象关于直线对称,证明当时,(III)如果,且,证明【命题立意】本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力。【思路点拨】利用导数及函数的性质解题。【规范解答】()解:f,令f(x)=0,解得x=1,当x变化时,f(x),f(x)的变化情况如下表x()1()f(x)+0-f(x)极大值所以f(x)在()内是增函数,在()内是减函数。函数f(x)在x=1处取得极大值f(1)且f(1)=()证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)令F(x)=f(x)-g(x),即于是当x>1时,2x-2>0,从而(x)>0,从而函数F(x)在1,+)是增函数。又F(1)=F(x)>F(1)=0,即f(x)>g(x).()证明

    注意事项

    本文(历届数学高考试题精选——导数及其应用(共50页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开