欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    恒压供水控制系统毕业设计(共32页).doc

    • 资源ID:13768296       资源大小:582KB        全文页数:32页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    恒压供水控制系统毕业设计(共32页).doc

    精选优质文档-倾情为你奉上华东交通大学理工学院Institute of Technology. East China Jiaotong University 毕 业 设 计(论 文)Graduation Design (Thesis)(20072011年)题 目 恒压供水控制系统设计 分 院: 机电分院 专 业: 机械设计制造及其自动化 班 级: 07机制3班 学 号: 301 学生姓名: 崔建涛 指导教师: 蒋英钰 起讫日期: 2011/2/102011/5/28 华东交通大学理工学院毕业设计(论文)原创性申明本人郑重申明:所呈交的毕业设计(论文)是本人在导师指导下独立进行的研究工作所取得的研究成果。设计(论文)中引用他人的文献、数据、图件、资料,均已在设计(论文)中特别加以标注引用,除此之外,本设计(论文)不含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。毕业设计(论文)作者签名: 日期: 年 月 日毕业设计(论文)版权使用授权书本毕业设计(论文)作者完全了解学院有关保留、使用毕业设计(论文)的规定,同意学校保留并向国家有关部门或机构送交设计(论文)的复印件和电子版,允许设计(论文)被查阅和借阅。本人授权华东交通大学理工学院可以将本设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编毕业设计(论文)。(保密的毕业设计(论文)在解密后适用本授权书)毕业设计(论文)作者签名: 指导教师签名:签字日期: 年 月 日 签字日期: 年 月 日专心-专注-专业摘 要变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。文中详细介绍了系统的控制原理及硬件电路。恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。4系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入具有压力显示的PID调节器运算处理后,输出模拟信号给变频器,利用变频器的两个可编程的继电器输出口RO1,RO2,将信号传给PLC,从而PLC判断是否加泵还是切泵。14用变频器来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分显著。系统的优点是启动平稳,启动电流可限制在额定电流以内,从而避免了启动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等使用寿命;可以消除启动和停机时的水锤效应。关键词: 变频器; 恒压供水系统 ; PLCAbstractThis paper introduces a constant pressure water supple system. It can regulate auto-matically the quantity and rotational speed of the water pump with the variation of the load. The controlling principle and the hardware circuit are presented in detail.The basic control strategy of the control system of constant pressure of water supply is: install the control system with motor speed adjustment and programmable logic controller (PLC), it carries out optimization control pump organization of the operation of speed adjustment, and adjusts the number of running pumps, completes pressure of water supply closed-loop control system, reaches the steady pressure of water supply in the changing of rate of flow in the pipe net and the purpose of economizing electrical energy. The control goal of system is the effluent pressure of pump station. Comparing the pressure of system setting and the actual hydraulic pressure coming from feed backed water supply control system, the comparing result inputs the PID regulator which has pressure show, after handling the result, exports analogy signal to the inverter, then using the inverter of the two programmable relay exports RO1 and RO2 to give PLC signal, so PLC judges whether add pump or cut pump. Compared realizing the constant pressure water supply with inverter with realizing the constant pressure water supply with adjustable valve, the effect of energy saving is very notable. The systems advantage is that starting steadily, the starting current may be restricted within specified current, so avoided the impact of electrical network when it starts; because the average rotational speed of pump is reduced, may prolong the using of pump and valve etc.; may eliminate water hammer effect when starts and stops machines.Key words:Inverter ;Constant pressure water supply system ; PLC目 录引 言水是生命之源,人类生存和发展都离不开水。在通常的城市及乡镇供水中,基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。1但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活供水系统。6然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。10 1变频恒压供水系统简介1.1选题背景及供水系统现状和发展趋势1.1.1选题的背景我国长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,工业自动化程度低。主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象;而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时会造成能量的浪费,同时还有可能造成水管爆裂和用水设备的损坏。传统调节供水压力的方式,多采用频繁启/停电机控制和水塔二次供水调节的方式,前者产生大量能耗的,而且对电网中其他负荷造成影响,设备不断启停会影响设备寿命;后者则需要大量的占地与投资。10且由于是二次供水,不能保证供水质的安全与可靠性。而变频调速式的运行十分稳定可靠,没有频繁的启动现象,启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击,也没有水塔供水所带来的二次污染的危险。由此可见,变频调速恒压供水系统具有供水安全、节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。1.1.2变频恒压供水的现况变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、压频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本SAMC公司,就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循环方式”两种模式。9它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。成都希望集团(森兰变频器)也推出恒压供水专用变频器(5.5kW-22kW),无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。9该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。 可以看出 ,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC),的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。1.1.3变频供水系统的发展趋势变频供水系统目前正在向集成化、维护操作简单化方向发展,在国内外,专门针对供水的变频器集成化越来越高,很多专用供水变频器集成了PLC 或PID,甚至将压力传感器也融入变频组件。同时维护操作也越来越简明显偏高,维护成本也高于国内产品。目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC 或PID调节器实现恒压供水,在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。7但在大功率大容量变频器上,国产变频器有待于进一步改进和完善。1.2恒压供水的设计要求和原理1.2.1恒压供水的要求根据用水量的变化(即压力的变化)自动调节系统的运行参数,在用水量变化时保持水压恒定。1.2.2系统的工作原理水泵启动后,压力传感器向控制器提供控制点的压力值H。当H低于控制器设定的压力值H0(H0按用户的水压要求设定)时,控制器向变频调速器发送提高水泵转速的控制信号;当H高于H0时,则发送降低水泵转速的控制信号。变频调速器则依此调节水泵工作电源的频率,改变水泵的转速,由此构成以设定压力值为参数的恒压供水自动调节闭环控制系统。图(1.1)给出了由三台水泵组成的典型恒压给水系统。这三台水泵可以交替循环工作,设三台水泵分别以1#、2#、3#代表,其循环过程如下。图1.1恒压给水设备系统原理图1-压力传感器;2-控制器;3-变频调速器;4-恒压泵控制器;5-水泵机组;6-闸阀;7-单向阀;8-贮水池;9-自动切换装置1#机泵通过微机开关系统从变频器的输出端得到逐渐上升的频率和电压,开始旋转(软启动)。频率上升到供水管网供水压力和流量要求的响应频率,并随供水管网的供水流量变化而做出响应,调整频率实现调速运行。如果这时供水管网的供水量增加到大于1/3Q、小于2/3Q值时,设备的输出频率上升到工频仍不能满足供水管网的供水要求,这时微机发出指令1#自动切换到工频(50HZ)运行,待1#水泵完全退出变频器,立即指令2#水泵投入变频启动,并自动响应其频率满足该时供水管网流量和压力的要求。如果这时供水管网的供水流量再上升到大于2/3Q、小于Q值,则类似,微机发出指令2#水泵亦切入工频运行,待2#水泵完全退出变频器,立即指令3#水泵投入变频启动,并响应至满足该时供水系统的流量和压力所需的频率运行。如果这是供水管网供水流量降至小于2/3Q,大于1/3Q值时,3#水泵的频率降至临界频率(按压力调速极限和效率调速极限确定),设备的输出仍大于供水系统的用水量,则微机发出指令1#泵停止工频运行(1#水泵停止后,处于临界频率的3#泵立即响应该时流量相应的频率)。如果这时供水流量继续下降至小于1/3Q,则微机发出指令2#泵停止工频运行,只有3#泵立即响应该时流量相应的频率,变频运行。设备的运行工作示意图如图(1.2)图1.2水泵工作示意图2变频恒压供水系统设计2.1变频器的选择2.1.1变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。10变频器包括控制电路、整流电路、中间直流电路及逆变电路组成。其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 2.1.2变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。142.1.3变频器的控制方式常见的变频调速模式有两种,一种是开环控制,另一种是速度反馈闭环控制,如图2.1所示。系统根据恒压的控制要求,采用的是PID调节方式(内含在变频器中) 的闭环控制。13 图2.1 变频调速系统的控制方式2.1.4变频器容量的选择变频器的容量直接关系到变频调速系统的运行可靠性,因此,合理的容量将保证最优的投资。变频器的容量选择在实际操作中存在很多误区,这里给出了三种基本的容量选择方法,它们之间互为补充。1、从电流的角度:大多数变频器容量可从三个角度表述:额定电流、可用电动机功率和额定容量。其中后两项,变频器生产厂家由本国或本公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。选择变频器时,只有变频器的额定电流是一个反映半导体变频装置负载能力的关键量。负载电流不超过变频器额定电流是选择变频器容量的基本原则。需要着重指出的是,确定变频器容量前应仔细了解设备的工艺情况及电动机参数,例如潜水电泵、绕线转子电动机的额定电流要大于普通笼形异步电动机额定电流,冶金工业常用的辊道用电动机不仅额定电流大很多,同时它允许短时处于堵转工作状态,且辊道传动大多是多电动机传动。应保证在无故障状态下负载总电流均不允许超过变频器的额定电流。 2、从效率的角度:系统效率等于变频器效率与电动机效率的乘积,只有两者都处在较高的效率下工作时,则系统效率才较高。从效率角度出发,在选用变频器功率时,要注意以下几点:(1)变频器功率值与电动机功率值相当时最合适,以利变频器在高的效率值下运转。(2)在变频器的功率分级与电动机功率分级不相同时,则变频器的功率要尽可能接近电动机的功率,但应略大于电动机的功率。(3)当电动机属频繁起动、制动工作或处于重载起动且较频繁工作时,可选取大一级的变频器,以利用变频器长期、安全地运行。(4)经测试,电动机实际功率确实有富余,可以考虑选用功率小于电动机功率的变频器,但要注意瞬时峰值电流是否会造成过电流保护动作。(5)当变频器与电动机功率不相同时,则必须相应调整节能程序的设置,以利达到较高的节能效果。3、从计算功率的角度:对于连续运转的变频器必须同时满足以下3个计算公式:(1)满足负载输出:PcnPm (3.1)(2)满足电动机容量:Pcn3KUeIe cos ×10-3(3.2)(3)满足电动机电流:IcnKIe(3.3)式中Pcn为变频器容量(单位kW),Pm为负载要求的电动机轴输出功率(单位kW),Ue为电动机额定电压(单位V),Ie为电动机额定电流(单位A),为电动机效率(通常约为085),cos为电动机功率因数(通常约为075),k是电流波形补偿系数(由于变频器的输出波形并不是完全的正弦波,而含有高次谐波的成分,其电流应有所增加,通常K约为10511)。2.1.5变频器的选择交流变频器是微计算机及现代电力电子技术高度发展的结果。微计算机是变频器的核心,电力电子器件构成了变频器的主电路。大家都知道,从发电厂送出的交流电的频率是恒定不变的,在我国是每秒50Hz。而交流电动机的同步转速。 式中-同步转速,r/min; -定子频率,Hz; -电机的磁极对数。而异步电动机转速式中-异步电机转差率,一般小于3%。均与送入电机的电流频率/成正比例或接近于正比例。因而,改变频率可以方便地改变电机的运行速度,也就是说变频对于交流电机的调运来说是十分合适的。根据计算所得的所需参数可以选择三菱FR-A540型变频器12(如图2.2所示),该变频器配有PID功能。通过外部电位器作为压力给定值。安装在管网上的压力传感器反馈来的压力信号(420mA)作为压力反馈至变频器的辅助输入端4端、5端。变频器时刻跟踪管网压力与设定压力值之间的偏差变化情况。经变频器内部PID运算,调节变频器的输出频率,改变水泵转速。并通过PLC控制水泵工频供电与变频供电的切换,自动控制水泵运行的台数,实现闭环控制。使水压保持恒定。2.1.6变频器的接线管脚STF接PLC的Y7管脚,控制电机的正转。X2接变频器的FU接口,X3接变频器的OL接口。频率检测的上/下限信号分别通过OL和FU输出至PLC的X3与X2输入端作为PLC增泵、减泵控制信号。图2.2变频器接线图2.2传感器的选择检测元件的精度直接影响系统的控制质量。通常可以选用各种压力传感器检测管网压力。传统的压力传感器有利用弹性元件的,如电感压力传感器、电容压力传感器等。PMC 系列压力传感器的构造与之不同,属于一体化的高精度仪器。它采用电子陶瓷技术,测量元件完全是固体形式。其工作原理是:使压力直接作用于电子陶瓷膜片,膜片出现位移后所产生的电容量被与其同体的电子元件检测、放大,最后转换成420mA的标准信号输出。PMC型传感器具有如下特点:(1)具有相当强的抗冲击和抗过载能力,过压量达额定量程的百倍以上;(2)由于压力测量元件中不采用传统的介质物质,所以,测量精度极高,且几乎不受温度梯度的影响;(3)采用脉冲频率调制方式传输信号,大大减少了现场干扰的影响,信号传输用普通导线完成,简单方便;(4)重量轻,体积小,安装维护非常方便。我们选PMC133型压力传感器作为出水口端压力检测元件,检测泵出口附近管网内压力作反馈信号, 该元件可承受的相对压力最大测量范围达O-40MPa,最小测量范围为O-lkPa,所需电源要求电压为12530V,精度±01,压力传感器将出水口的压力信号线性转换为4-20mA DC 标准信号送到PLC(在该系统中,我选取0-500kPa)。2.3水泵的选择选取2种型号的水泵,小泵为常开泵(能够调节到工频),大泵只能在变频状态下工作。扬程用H表示,单位为米(m)。泵的压力用P表示,单位为Mpa(兆帕),H=P/.如P为1kg/cm2,则H=(lkg/ cm2)/(1000kg/ m3) H=(1kg/ cm2)/(1000公斤/m3)=(10000公斤/m2)/1000公斤/m3=10m ,1Mpa=10kg/cm2,H=(P2-P1)/ (P2=出口压力 P1=进口压力)北京市市政供水水压8kg/cm2,15即P1=0.8Mpa。P2=gh=3.09MpaH=(P2-P1)/=23m根据供水压力为实用扬程的2-3倍,水泵扬程选择在50-65m之间。15考虑到居民区水泵噪音大小以及转速和水泵节能等因素选择小泵为Y355M1-4,大泵为Y355-M2-4。参数见表3.2(按实际需要选取,我选了2种比较常用的型号)。表3.2 水泵性能参数表2转速流量扬程效率汽蚀裕量轴功率(清水)配带电机(Sm=1.2)Rpmm3/hl/sm%mkW型号kW1100435.5121.063.750.04.0151.1Y355M1-4/220kW850511.0141.962.554.03.0161.1Y355M2-4/250kW2.4可编程控制器(PLC)2.4.1 PLC的定义及特点在PLC的发展过程中,美国电气制造商协会(NEMA)经过4年的调查,于1980年把这种新型的控制器正式命名为可编程序控制器(Programmable Controller),英文缩写为PC,并作如下定义:“可编程序控制器是一种数字式电子装置。它使用可编程序的存储器来存储指令,并实现逻辑运算、顺序控制、计数、计时和算术运算功能,用来对各种机械或生产过程进行控制。3PLC的特点如下:1、高可靠性(1)所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离。(2)各输入端均采用R-C滤波器,其滤波时间常数一般为1020ms.(3)各模块均采用屏蔽措施,以防止辐射干扰。(4)采用性能优良的开关电源。(5)对采用的器件进行严格的筛选。(6)良好的自诊断功能,一旦电源或其他软,硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。(7)大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。52、丰富的I/O接口模块 PLC针对不同的工业现场信号,如: 交流或直流; 开关量或模拟量; 电压或电流; 脉冲或电位; 强电或弱电等。有相应的I/O模块与工业现场的器件或设备,如: 按钮 行程开关 接近开关 传感器及变送器 电磁线圈 控制阀直接连接。另外为了提高操作性能,它还有多种人-机对话的接口模块; 为了组成工业局部网络,它还有多种通讯联网的接口模块,等等。3、采用模块化结构 为了适应各种工业控制需要,除了单元式的小型PLC以外,绝大多数PLC均采用模块化结构。PLC的各个部件,包括CPU,电源,I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。4、编程简单易学 PLC的编程大多采用类似于继电器控制线路的梯形图形式,对使用者来说,不需要具备计算机的专门知识,因此很容易被一般工程技术人员所理解和掌握。5、安装简单,维修方便PLC不需要专门的机房,可以在各种工业环境下直接运行。使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。各种模块上均有运行和故障指示装置,便于用户了解运行情况和查找故障。由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速恢复运行。2.4.2 PLC的工作原理PLC采用循环扫描的工作方式,在PLC中用户程序按先后顺序存放,CPU从第一条指令开始执行程序,直到遇到结束符后又返回第一条,如此周而复始不断循环。PLC的扫描过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。5全过程扫描一次所需的时间称为扫描周期。当PLC处于停状态时,只进行内部处理和通信操作服务等内容。在PLC处于运行状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作.2.4.3 PLC的选择水泵M1、M2、M3可变频运行,也可工频运行,需PLC的6个输出点,变频器的运行与关断由PLC的1个输出点,控制变频器使电机正转需1个输出信号控制,报警器的控制需要1个输出点,输出点数量一共9个。控制起动和停止需要2个输入点,变频器极限频率的检测信号占用 PLC 2个输入点,系统自动/手动起动需1个输入点,手动控制电机的工频/变频运行需6个输入点,控制系统停止运行需1个输入点,检测电机是否过载需3个输入点,共需15个输入点。系统所需的输入输出点数量共为24个点。系统选用FXOS-30MR-D型PLC。2.4.4 PLC的接线图2.3 PLC的接线图Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M3的变频运行,Y5接KM5控制M3的工频运行。X0接起动按钮,X1接停止按钮,X2接变频器的FU接口,X3接变频器的OL接口,X4接M1的热继电器,X5接M2的热继电器,X6接M3的热继电器。为了防止出现某台电动机既接工频电又接变频电设计了电气互锁。在同时控制M1电动机的两个接触器KM1、KM0线圈中分别串入了对方的常闭触头形成电气互锁。频率检测的上/下限信号分别通过OL和FU输出至PLC的X2与X3输入端作为PLC增泵减泵控制信号。2.5电气控制系统原理图2.5.1主电路图如下图2.4所示为电控系统主电路图。三台电机分别为M1、M2、M3。接触KM1、KM3、KM5分别控制M1、M2、M3的工频运行;接触器KM2、KM4、KM6分别控制M1、M2、M3的变频运行,FR1、FR2、FR3分别为三台水泵电机过载保护用的热继电器;QS1、QS2、QS3、分别为变频器和三台水泵电机主电路的隔离开关;FU1为主电路的熔断器。 图2.4 电控系统主电路图本系统采用三泵循环变频运行方式,即3台水泵中只有1台水泵在变频器控制下作变速运行,其余水泵在工频下做恒速运行,在用水量小的情况下,如果变频泵连续运行时间超过3h,则要切换下一台水泵,即系统具有“倒泵功能”,避免某一台水泵工作时间过长。因此在同一时间内只能有一台水泵工作在变频下,但不同时间段内三台水泵都可轮流做变频泵。三相电源经低压熔断器、隔离开关接至变频器的R、S、T端,变频器的输出端U、V、W通过接触器的触点接至电机。当电机工频运行时,连接至变频器的隔离开关及变频器输出端的接触器断开,接通工频运行的接触器和隔离开关。主电路中的低压熔断器除接通电源外,同时实现短路保护,每台电动机的过载保护由相应的热继电器FR实现。变频和工频两个回路不允许同时接通。而且变频器的输出端绝对不允许直接接电源,故必须经过接触器的触点,当电动机接通工频回路时,变频回路接触器的触点必须先行断开。为监控电机负载运行情况,主回路的电流大小可以通过电流互感器和变送器将4-20mA电流信号送至上位机来显示。同时可以通过转换开关接电压表显示线电压。并通过转换开关利用同一个电压表显示不同相之间的线电压。初始运行时,必须观察电动机的转向,使之符合要求。如果转向相反,则可以改变电源的相序来获得正确的转向。2.5.2控制电路图SA1 0 2FU2SB1 SB2KM1Y000Y001PLCSB3 SB4KM3SB5 SB6KM5SB7 SB8YV2KM1 FR1HL1KM2HL2Y002Y003Y004Y005Y010 16Y011 18Y012 20Y01322Y014Y015 24 26HL7HL8HL9HAKAHL10KM6HL6YV214 KM5KM3 FR2 HL3 KM4 HL4KM5 FR3 HL5KM2KM1KM3KM6KM52.5 电控系统控制电路图如上图2.5为电控系统控制电路图。图中SA为手动/转换开关,SA打在1的位置为手动控制状态;打在2的状态为自动控制状态。手动运行时,可用按钮SBlSB8控制三台泵的启/停和电磁阀YV2的通断;自动运行时,系统在PLC程序控制下运行。图中的HL10为自动运行状态电源指示灯。对变频器R进行复位时只提供一个干触点信号,由于PM为4个输出点为一组共用一个COM端,而本系统又没有剩下单独的COM端输出组,所以通过一个中间继电器KA的触点对变频器实行复频控制。3系统的程序设计3.1 PLC控制由于供水系统惯性较大,因此在设计思想上以查询方式为主,本系统PLC控制程序流程如图3.1。图3.1 PLC程序流程图系统起动之后,检测是自动运行模式还是手动运行模式。如果是手动运行模式则进行手动操作,人们根据自己的需要操作相应的按钮,系统根据按钮执行相应操作。如果是自动运行模式,则系统根据程序及相关的输入信号执行相应的操作。手动模式主要是解决系统出错或器件出问题在自动运行模式中,如果PLC接到频率上限信号,则执行增泵程序,增加水泵的工作数量。如果PLC接到频率下限信号,则执行减泵程序,减少水泵的工作数量。没接到信号就保持现有的运行状态。3.1.1 手动运行当按下SB7按钮,用手动方式。按下SB10手动启动变频器。当系统压力不够需要增加泵时,按下SBn(n=1,3,5)按钮,此时切断电机变频,同时启动电机工频运行,再起动下一台电机。为了变频向工频切换时保护变频器免于受到工频电压的反向冲击,在切换时,用时间继电器作了时间延迟,当压力过大时,可以手动按下SBn(n=2,4,6)按钮,切断工频运行的电机,同时启动电机变频运行。可根据需要,停按不同电机对应的启停按钮,可以依次实现手动启动和手动停止三台水泵.该方式仅供自动故障时使用.3.1.2 自动运行由PLC分别控制某台电机工频和变频继电器,在条件成立时,进行增泵升压和减泵降压控制.升压控制:系统工作时,每台水泵处于三种状态之一,即工频电网拖动状态、变频器拖动调速状态和停止状态.系统开始工作时,供水管道内水压力为零,在控制系统作用下,变频器开始运行,第一台水泵M1,启动且转速逐渐升高,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间M1处在调速运行状态.当用水量增加水压减小时,通过压力闭环调节水泵按设定速率加速到另一个稳定转速;反之用水量减少水压增加时,水泵按设定的速率减速到新的稳定转速.当用水量继续增加,变频器输出频率增加至工频时,水压仍低于设定值,由PLC控制切换至工频电网后恒速运行;同时,使第二台水泵M2投入变频器并变速运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,每当加速运行的变频器输出频率达到工频时,将继续发生如上转换,并有新的水泵投人并联运行.当最后一台水泵M3投人运行,变频器输出频率达到工频,压力仍未达到设定值时,控制系统就会发出故障报警。11降压控制:当用水量下降水压升高,变频器输出频率降至起动频率时,水压仍高于设定值,系统将工频运行时间最长的一

    注意事项

    本文(恒压供水控制系统毕业设计(共32页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开