欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    必修二立体几何经典证明题(共10页).doc

    • 资源ID:13806218       资源大小:668KB        全文页数:10页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    必修二立体几何经典证明题(共10页).doc

    精选优质文档-倾情为你奉上CBADC1A1必修二立体几何经典证明试题1. 如图,三棱柱ABCA1B1C1中,侧棱垂直底面,ACB=90°,AC=BC=AA1,D是棱AA1的中点()证明:平面BDC1平面BDC()平面BDC1分此棱柱为两部分,求这两部分体积的比.2. 如图5所示,在四棱锥中,平面,是的中点,是上的点且,为中边上的高.(1)证明:平面;(2)若,求三棱锥的体积;(3)证明:平面. 3. 如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点求证:(1)平面平面; (2)直线平面4. 如图,四棱锥PABCD中,ABCD为矩形,PAD为等腰直角三角形,APD=90°,面PAD面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点(1)证明:EF面PAD;(2)证明:面PDC面PAD;(3)求四棱锥PABCD的体积 5. 在如图所示的几何体中,四边形是正方形,平面,、分别为、的中点,且.(I)求证:平面平面;(II)求三棱锥与四棱锥的体积 之比.6. 如图,正方形ABCD和四边形ACEF所在的平面互相垂直。EF/AC,AB=,CE=EF=1()求证:AF/平面BDE;()求证:CF平面BDF;7.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EFAB,EFFB,BFC=90°,BF=FC,H为BC的中点,()求证:FH平面EDB;()求证:AC平面EDB; ()求四面体BDEF的体积;8. 如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF平面ABC; (2)平面平面.9.如图4,在边长为1的等边三角形中,分别是边上的点,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明:/平面;(2) 证明:平面;(3) 当时,求三棱锥的体积. 10.如图,在四棱锥中,平面底面,和分别是和的中点,求证:(1)底面;(2)平面;(3)平面平面11. (2013年山东卷)如图,四棱锥中,分别为的中点()求证:;()求证:立体几何经典试题参考答案CBADC1A11. 【解析】()由题设知BC,BCAC,,面, 又面,,由题设知,=,即,又, 面, 面,面面;()设棱锥的体积为,=1,由题意得,=,由三棱柱的体积=1,=1:1, 平面分此棱柱为两部分体积之比为1:1.2. 【解析】(1)证明:因为平面,所以。因为为中边上的高,所以。 因为, 所以平面。(2)连结,取中点,连结。 因为是的中点, 所以。 因为平面,所以平面。则, 。(3)证明:取中点,连结,。 因为是的中点,所以。因为,所以,所以四边形是平行四边形,所以。因为, 所以。因为平面, 所以。 因为,所以平面,所以平面。3. 【答案】证明:(1)是直三棱柱,平面。 又平面,。 又平面,平面。 又平面,平面平面。 (2),为的中点,。 又平面,且平面,。 又平面,平面。 由(1)知,平面,。 又平面平面,直线平面4. 如图,连接AC,ABCD为矩形且F是BD的中点,AC必经过F 1分又E是PC的中点,所以,EFAP2分EF在面PAD外,PA在面内,EF面PAD(2)面PAD面ABCD,CDAD,面PAD面ABCD=AD,CD面PAD,又AP面PAD,APCD又APPD,PD和CD是相交直线,AP面PCD又AD面PAD,所以,面PDC面PAD (3)取AD中点为O,连接PO,因为面PAD面ABCD及PAD为等腰直角三角形,所以PO面ABCD,即PO为四棱锥PABCD的高AD=2,PO=1,所以四棱锥PABCD的体积5. 【解析】(I)证明:由已知MA 平面ABCD,PD MA, 所以 PD平面ABCD又 BC 平面ABCD,因为 四边形ABCD为正方形,所以 PD BC 又 PDDC=D, 因此 BC平面PDC在PBC中,因为G平分为PC的中点,所以 GFBC因此 GF平面PDC又 GF 平面EFG,所以 平面EFG平面PDC.( )解:因为PD平面ABCD,四边形ABCD为正方形,不妨设MA=1, 则 PD=AD=2,ABCD 所以 Vp-ABCD=1/3S正方形ABCD,PD=8/3 由于 DA面MAB的距离 所以 DA即为点P到平面MAB的距离,三棱锥 Vp-MAB=1/3×1/2×1×2×2=2/3,所以 Vp-MAB:p-ABCD=1:4。6. 证明:()设AC于BD交于点G。因为EFAG,且EF=1,AG=AG=1 所以四边形AGEF为平行四边形 所以AFEG 因为EG平面BDE,AF平面BDE, 所以AF平面BDE ()连接FG。因为EFCG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形。所以CFEG. 因为四边形ABCD为正方形,所以BDAC.又因为平面ACEF平面ABCD,且平面ACEF平面ABCD=AC,所以BD平面ACEF.所以CFBD.又BDEG=G,所以CF平面BDE.7. 8.9. 【答案】(1)在等边三角形中, ,在折叠后的三棱锥中 也成立, ,平面, 平面,平面; (2)在等边三角形中,是的中点,所以,. 在三棱锥中, ; (3)由(1)可知,结合(2)可得. 10. 【答案】(I)因为平面PAD平面ABCD,且PA垂直于这个平面的交线AD 所以PA垂直底面ABCD. (II)因为ABCD,CD=2AB,E为CD的中点 所以ABDE,且AB=DE 所以ABED为平行四边形, 所以BEAD,又因为BE平面PAD,AD平面PAD 所以BE平面PAD. (III)因为ABAD,而且ABED为平行四边形 所以BECD,ADCD,由(I)知PA底面ABCD, 所以PACD,所以CD平面PAD 所以CDPD,因为E和F分别是CD和PC的中点 所以PDEF,所以CDEF,所以CD平面BEF,所以平面BEF平面PCD. 11略专心-专注-专业

    注意事项

    本文(必修二立体几何经典证明题(共10页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开