高一数学的函数定义域、值域和单调性、奇偶性练习题(整理)(共12页).doc
-
资源ID:13817746
资源大小:642.50KB
全文页数:12页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高一数学的函数定义域、值域和单调性、奇偶性练习题(整理)(共12页).doc
精选优质文档-倾情为你奉上高一数学函 数 练 习 题一、 求函数的定义域 1、 求下列函数的定义域: 2、设函数的定义域为,则函数的定义域为_ _ _;函数的定义域为_; 3、若函数的定义域为,则函数的定义域是 二、求函数的值域4、求下列函数的值域: 5.已知函数的值域为1,3,求的值。三、求函数的解析式系 1、已知函数,求函数,的解析式。2、已知是二次函数,且,求的解析式。3、 已知函数满足,则= 。4、设是R上的奇函数,且当时, ,则当时=_ _ 在R上的解析式为 5、 设与的定义域是, 是偶函数,是奇函数,且,求与 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间: 7、函数在上是单调递减函数,则的单调递增区间是 五、 综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) , ; , ; , ; , ; , 。 A、 B、 、 C、 D、 、10、若函数= 的定义域为,则实数的取值范围是( )A、(,+) B、(0, C、(,+) D、0, 11、若函数的定义域为,则实数的取值范围是( )(A) (B) (C) (D) 12、对于,不等式恒成立的的取值范围是( )(A) (B) 或 (C) 或 (D) 13、函数的定义域是( )A. B. C. D.14、函数是( ) A、奇函数,且在(0,1)上是增函数 B、奇函数,且在(0,1)上是减函数C、偶函数,且在(0,1)上是增函数 D、偶函数,且在(0,1)上是减函数15、函数 ,若,则= 16、已知函数的定义域是,则的定义域为 。17、已知函数的最大值为4,最小值为 1 ,则= ,= 18、把函数的图象沿轴向左平移一个单位后,得到图象C,则C关于原点对称的图象的解析式为 19、求函数在区间 0 , 2 上的最值20、 若函数时的最小值为,求函数当-3,-2时的最值。 21、已知,讨论关于的方程的根的情况。22、已知,若在区间1,3上的最大值为,最小值为,令。(1)求函数的表达式;(2)判断函数的单调性,并求的最小值。解:(1)a1,f(x)的图像为开口向上的抛物线,且对称轴为,f(x)有最小值,当23时,f(x)有最大值M(a)=f(1)=a-1;当1<2时,f(x)有最大值M(a)=f(3)=9a-5;。 (2)设则,g(a)在上是减函数;设则,在上是增函数,当时,g(a)有最小值。23、定义在上的函数,当时,且对任意,。 求; 求证:对任意;求证:在上是增函数; 若,求的取值范围。函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。例1 设是一次函数,且,求解:设 ,则 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。 例2 已知 ,求 的解析式解:, 换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3 已知,求解:令,则, 代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则,解得: ,点在上 把代入得: 整理得 构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5 设求解 显然将换成,得: 解 联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解 为偶函数,为奇函数, 又 ,用替换得: 即 解 联立的方程组,得 , 赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有 再令 得函数解析式为:递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8 设是定义在上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 分别令式中的 得: 将上述各式相加得:, 函 数 练 习 题 答 案一、 函数定义域:1、(1) (2) (3)2、; 3、 4、二、 函数值域:5、(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)6、三、 函数解析式:1、 ; 2、 3、4、 ; 5、 四、 单调区间:6、(1)增区间: 减区间: (2)增区间: 减区间: (3)增区间: 减区间:7、 8、 8、 综合题:C D B B D B 14、 15、 16、 17、 18、解:对称轴为 (1), , (2), ,(3), ,(4) , , 19、解: 时,为减函数在上,也为减函数 , 20、21、22、(略)专心-专注-专业