五年级奥数.计算综合.裂项(B级).学生版(共11页).doc
-
资源ID:13830439
资源大小:1.19MB
全文页数:11页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
五年级奥数.计算综合.裂项(B级).学生版(共11页).doc
精选优质文档-倾情为你奉上裂项考试要求i(1) 能熟练运算常规裂和型题目;(2) 复杂整数裂项运算;(3) 分子隐蔽的裂和型运算。(4) 通项归纳知识结构一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。1、 对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有2、 对于分母上为3个或4个自然数乘积形式的分数,我们有:3、 对于分子不是1的情况我们有:二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。三、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。整数裂项口诀:等差数列数,依次取几个。所有积之和,裂项来求作。后延减前伸,差数除以N。N取什么值,两数相乘积。公差要乘以,因个加上一。需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。四、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) (2)裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。重难点(1) 复杂整数裂项的特点及灵活运用(2) 分子隐蔽的裂和型运算。(3) 通项归纳及其例题精讲一、用裂项法求型分数求和【例 1】 【巩固】【例 2】 计算:【巩固】计算:二、用裂项法求型分数求和 分析:(n,k均为自然数)【例 3】 【巩固】三、用裂项法求型分数求和分析:(n,k均为自然数) 【例 4】 计算: 【巩固】 四、用裂项法求型分数求和 分析:(n,k均为自然数)【例 5】 计算:【巩固】五、复杂裂项【例 6】【巩固】【例 7】 . 【巩固】计算: 【例 8】 计算: 【巩固】计算: 【例 9】 计算:【巩固】计算: 【例 10】 【巩固】课堂检测1、 计算: 2、 3、4、5、家庭作业1、 计算: 2、 计算:3、 计算: 4、 计算: 5、 计算:教学反馈学生对本次课的评价特别满意 满意 一般家长意见及建议 家长签字:专心-专注-专业