欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考专题:垂直平分线与角平分线(共7页).doc

    • 资源ID:13841990       资源大小:157.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考专题:垂直平分线与角平分线(共7页).doc

    精选优质文档-倾情为你奉上线段的垂直平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点这条线段两个端点的距离相等. 定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且ADBD,若点C在直线m上,则ACBC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且ADBD,若ACBC,则点C在直线m上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线分别是ABC三边AB、BC、CA的垂直平分线,则直线相交于一点O,且OAOBOC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在ABC中,BC8cm,AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长等于()A6cm B8cmC10cm D12cmB针对性练习:已知:1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交BC于点 AE,如果EBC的周长是24cm,那么BC= D 2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交BC于点E,如果BC=8cm,EBC那么EBC的周长是 3) 如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果A=28度,那么EBC是 例2. 已知:如图所示,AB=AC,DB=DC,E是AD上一点,求证:BE=CE。B针对性练习:已知:在ABC中,ON是AB的垂直平分线,OA=OC 求证:点O在BC的垂直平分线NA OCB例3. 在ABC中,AB=AC,AB的垂直平分线与边AC所在的直线相交所成锐角为50°,ABC的底角B的大小为_。B针对性练习:1. 在ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,则底角B的大小为_。例4、如图8,已知AD是ABC的BC边上的高,且C2B,求证:BDACCD.证明:课堂练习:1.如图,AC=AD,BC=BD,则( )A.CD垂直平分AD B.AB垂直平分CD C.CD平分ACB D.以上结论均不对2.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是( )A.直角三角形B.锐角三角形 C.钝角三角形 D.等边三角形3.下列命题中正确的命题有( )线段垂直平分线上任一点到线段两端距离相等;线段上任一点到垂直平分线两端距离相等;经过线段中点的直线只有一条;点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个4.如图,ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么DBC的周长是( )A.6 cmB.7 cmC.8 cmD.9 cm5.已知如图,在ABC中,AB=AC,O是ABC内一点,且OB=OC,求证:AOBC.6.如图,在ABC中,AB=AC,A=120°,AB的垂直平分线MN分别交BC、AB于点M、N. 求证:CM=2BM. 角平分线知识要点详解4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 定理的数学表示:如图4,已知OE是AOB的平分线,F是OE上一点,若CFOA于点C,DFOB于点D,则CFDF. 定理的作用:证明两条线段相等;用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,已知点P在AOB的内部,且PCOA于C,PDOB于D,若PCPD,则点P在AOB的平分线上. 定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线 注意角平分线的性质定理与逆定理的区别和联系.6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是ABC的内角BAC、ABC、ACB的平分线,那么: AP、BQ、CR相交于一点I; 若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DIEIFI. 定理的作用:用于证明三角形内的线段相等;用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线; (2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.经典例题:例1、 已知:如图,点B、C在A的两边上,且AB=AC,P为A内一点,PB=PC, PEAB,PFAC,垂足分别是E、F。求证:PE=PFB针对性练习:已知:如图所示PA、PC分别是ABC外角MAC和NCA平分线,它们交于P,PDBM于D,PFBN于F,求证:BP为MBN的平分线。例2、如图10,已知在直角梯形ABCD中,ABCD,ABBC,E为BC中点,连接AE、DE,DE平分ADC,求证:AE平分BAD.例3、如图11-1,已知在四边形ABCD中,对角线BD平分ABC,且BAD与BCD互补,求证:ADCD.课堂练习:1. ABC中,AB=AC,AC的中垂线交AB于E,EBC的周长为20cm,AB=2BC,则腰长为_。2. 如图所示,AB/CD,O为A、C的平分线的交点,OEAC于E,且OE=2,则AB与CD之间的距离等于_。已知:如图,B=C=900,DM平分ADC, AM平分DAB 。求证: M B=MC如图,四边形ABCD内接于O,AB是O的直径,AC和BD相交于点E,且DC2=CECA(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AFCD交CD的延长线于点F,若PB=OB,CD=,求DF的长专心-专注-专业

    注意事项

    本文(中考专题:垂直平分线与角平分线(共7页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开