2014年江西省中考数学试卷及答案(共11页).doc
-
资源ID:13844641
资源大小:838.50KB
全文页数:11页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2014年江西省中考数学试卷及答案(共11页).doc
精选优质文档-倾情为你奉上江西省2014年中等学校招生考试数学试卷说明:1本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟2本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1下列四个数中,最小的数是( ) AB0C2D22某市月份某周气温(单位:)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ) A25,25 B28,28 C25,28 D28,313下列运算正确的是是( ) Aa2+a3=a5 B(2a2)3=6a5C(2a+1)(2a-1)=2a2-1D(2a3-a2)÷2a=2a-14直线y=x+1与y=2x+a的交点在第一象限,则a的取值可以是( ) A-1B0C1D25如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐奢压扁,剪去上面一截后,正好合适。以下裁剪示意图中,正确的是( )6已知反比例函数的图像如右图所示,则二次函数的图像大致为( )二、填空题(本大题共8小题,每小题3分,共24分)7计算:_8据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务。5.78万可用科学记数法表示为_。9不等式组的解集是_10若是方程的两个实数根,则_。11如图,在ABC中,AB=4,BC=6,B=60°,将三角形ABC沿着射线BC的方向平移2个单位后,得到三角形ABC,连接AC,则ABC的周长为_。12如图,ABC内接于O,AO=2,则BAC的度数_13如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。若,AB=2,则图中阴影部分的面积为_.14在RtABC中,A90°,有一个锐角为60°,BC=6若P在直线AC上(不与点A,C重合),且ABP30°,则CP的长为_.三、(本大题共四小题,每小题6分,共24分)15计算÷.16小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2和盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元。求每支中性笔和每盒笔芯的价格。17已知梯形ABCD,请使用无刻度直尺画图。(1)在图1中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形。18有六张完全相同的卡片,分A、B两组,每组三张,在A组的卡片上分别画上“、×、”,B组的卡片上分别画上“、×、×”,如图1所示。(1)若将卡片无标记的一面朝上摆在桌上,再发布从两组卡片中随机各抽取一张,求两张卡片上标记都是的概率(请用树形图法或列表法求解)(2)若把A、B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记。若随机揭开其中一个盖子,看到的标记是的概率是多少若揭开盖子,看到的卡片正面标记是后,猜想它的反面也是,求猜对的概率。四、(本大题共3小题,每小题8分,共24分)19如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,OA=4,AB=5,点D在反比例函数(k>0)的图象上,点P在y轴负半轴上,OP=7.(1)求点B的坐标和线段PB的长;(2)当时,求反比例函数的解析式。20某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某部分初中学生进行了调查。依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中a、b、c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读教科书”的初中生人数(3)根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议; 如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?21图1中的中国结挂件是由四个相同的菱形在顶点处依次串接而成,每相邻两个菱形均成30度的夹角,示意图如图2所示。在图2中,每个菱形的边长为10cm,锐角为60度。(1)连接CD、EB,猜想它们的位置关系并加以证明;(2)求A、B两点之间的距离(结果取整数,可以使用计算器)(参考数据:) 五、(本大题共2小题,每小题9分,共18分)22如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP。(1)求OPC的最大面积;(2)求OCP的最大度数;(3)如图2,延长PO交圆O于点D,连接DB,当CP=DB,求证:CP是圆O的切线.23如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A、B重合),点F在BC边上(不与点B、C重合)。第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去(1)图2中的三角形EFD是经过两次操作后得到的,其形状为_,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH。请判断四边形EFGH的形状为_,此时AE与BF的数量关系是_。以中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围。24如图1,抛物线的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若三角形AMB为等腰直角三角形,我们把抛物线上A、B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高。(1)抛物线对应的碟宽为_;抛物线对应的碟宽为_;抛物线(a>0)对应的碟宽为_;抛物线对应的碟宽_;(2)若抛物线对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线的对应准蝶形记为Fn(n=1,2,3,),定义F1,F2,.Fn为相似准蝶形,相应的碟宽之比即为相似比。若Fn与Fn-1的相似比为,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.求抛物线y2的表达式 若F1的碟高为h1,F2的碟高为h2,Fn的碟高为hn。则hn=_,Fn的碟宽右端点横坐标为_;F1,F2,.Fn的碟宽右端点是否在一条直线上?若是,直接写出改直线的表达式;若不是,请说明理由。【答案】 (1)4、;(2);(3);、.【考点】 二次函数解析式与图像性质,等腰直角三角形性质,探索规律.【分析】 (1)根据准碟形的定义易算出含具体值的抛物线y=x2、抛物线y=4x2的碟宽,且都利用第一象限端点B的横纵坐标的相等,类似推广至含字母的抛物线y=ax2(a0)而抛物线y=a(x-2)2+3(a0)为顶点式,可看成y=ax2向右、向上平移得到,因而发现碟宽的规律,只与a有关,碟宽= 亦可先根据画出二次函数的大致图像,根据题意并从图像分析可知,其准碟形碟宽两端点A、B和抛物线的顶点M围成的AMB是等腰直角三角形,进而知道A、B两点的纵坐标和横坐标绝对值相等,代入即可求出二次项系数a与碟宽之间的关系式,而y=a(x-2)2+3(a0)为顶点式,可看成y=ax2平移得到,只与a有关。(2)根据(1)中的结论,根据碟宽为6,列出方程=6,求出a的值(3)把(2)中求出的a代入,得出y1的解析式,易推出y2结合画图,易知,都在直线x=2上,但证明需要有一般推广,可以考虑,且都过Fn-1的碟宽中点,进而可得另外,画图时易知碟宽有规律递减,所以推理也可得右端点的特点对于F1,F2,Fn的碟宽右端点是否在一条直线上,如果写出所有端点规律不可能,找规律更难,所以可以考虑基础的几个图形关系,如果相邻3个点构成的两条线段不共线,则结论不成立,反正结论成立而最后一空的求直线表达式只需考虑特殊点即可【解答】 解:(1)4、.a0,y=ax2的图象大致如图1,其必经过原点O.记线段AB为其准蝶形碟宽,AB与y轴的交点为C,连接OA,OBOAB为等腰直角三角形,ABx轴,OCAB,AOC=BOCAOB×90°=45°,即AOC=BOC亦为等腰直角三角形,AC=OC=BC,即A、B两点x轴和y轴坐标绝对值相同代入,得方程,解得.由图像可知,A(,),B( ,),C(0,),即AC=OC=BC,AB=·2,即的碟宽为AB.抛物线y=x2对应的,得碟宽=4;抛物线y=4x2对应的a=4,得碟宽=;抛物线(a0)的碟宽为;抛物线y=a(x-2)2+3(a0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,平移不改变形状、大小、方向,抛物线y=a(x-2)2+3(a0)的准碟形抛物线y=ax2的准碟,抛物线y=ax2(a0),碟宽为,抛物线y=a(x-2)2+3(a0),碟宽为.(2)解法一:y=ax24axa(x2)2(4a)同(1)得其碟宽为,y=ax24ax的碟宽为6,=6,解得,a=.y(x-2)2-3解法二:可得,又已知碟宽在x轴上,碟高=3,解得a±,又a0,a Error! Reference source not found.不合题意舍去,a1.(3) 解法一:F1的碟宽F2的碟宽=2:1,的碟宽AB在x轴上(A在B左边),A(-1,0),B(5,0),F2的碟顶坐标为(2,0),解法二:,a,即碟顶的坐标为(2,3).的碟顶是的碟宽的中点,且的碟宽线段在x轴上,的碟顶的坐标为(2,0),设,与的相似比为,的碟宽为6,的碟宽为6×3,即3,.的准碟形为等腰直角三角形,的碟宽为2,.=3,·3.,且都过的碟宽中点,都在同一条直线上,在直线x=2上,都在直线x=2上,的碟宽右端点横坐标为2+·3.F1,F2,Fn的的碟宽右端点在一条直线上,直线为y=-x+5理由:考虑Fn-2,Fn-1,Fn情形,关系如图2,Fn-2,Fn-1,Fn的碟宽分别为AB,DE,GH;且C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EHABx轴,DEx轴,GHx轴,ABDEGH,GH平行相等于FE,DE平行相等于CB,四边形GFEH、四边形DCBE都是平行四边形,HEGF,EBDC,GFI=GFH= DCE=DCF,GFDC,HEEB,HE,EB都过E点, HE,EB在一条直线上,的碟宽的右端点是在一条直线,的碟宽的右端点是在一条直线根据中得出的碟高和右边端点公式,可知准碟形右端点坐标为(5,0),准碟形右端点坐标为,即(3.5,1.5)待定系数可得过两点的直线为y=x+5,F1,F2,Fn的碟宽的右端点是在直线y=-x+5上【点评】 本题考查学生对新定义和新知识的学习、模仿和应用能力题目中主要涉及特殊直角三角形,二次函数解析式与图象性质,多点共线证明等知识,综合难度较高,学生对题意要清晰的理解比较困难。专心-专注-专业