欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    导数恒成立解答题的几种处理方法(共6页).doc

    • 资源ID:13845756       资源大小:519.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    导数恒成立解答题的几种处理方法(共6页).doc

    精选优质文档-倾情为你奉上等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法:1、求导之后,将参数分离出来,构造新函数,计算例:已知函数 ()若函数在区间(其中)上存在极值,求实数的取值范围;()如果当时,不等式恒成立,求实数k的取值范围;解:()因为, ,则, 1分当时,;当时, 所以在(0,1)上单调递增;在上单调递减, 所以函数在处取得极大值 2分 因为函数在区间(其中)上存在极值, 所以 解得 4分()不等式,即为 记所以 6分 令则, 在上单调递增,从而 故在上也单调递增,所以 8分2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围例题:设,其中(1)若有极值,求的取值范围;(2)若当,恒成立,求的取值范围解:(1)由题意可知:,且有极值,则有两个不同的实数根,故,解得:,即                                (4分)(2)由于,恒成立,则,即         (6分)由于,则       当时,在处取得极大值、在处取得极小值,则当时,解得:;          (8分)       当时,即在上单调递增,且,则恒成立;                                           (10分)       当时,在处取得极大值、在处取得极小值,则当时,解得:综上所述,的取值范围是:          但是对于导数部分的难题,上述方法不能用时,我们得另辟蹊径:一、分开求左右最值:1、已知函数。 (1)求函数在上的最小值;(2)求证:对一切,都有解(1),令,得,当时,单减;当时,单增。 (2分) 当时,在上单减,在上单增,所以;(4分) 当时,在上单增,所以。 (6分)(2)要证原命题成立,需证:成立。设,则,令得,当时,单增;当时,单减,所以当时,。 (9分)又由(1)得在上单减,在上单增,所以当时,又,(11分)所以对一切,都有成立。(12分)2、设函数,记,若函数至少存在一个零点,则实数的取值范围是     设,令,发现函数在上都单调递增,在上都单调递减,于是函数在上单调递增,在上单调递减,所以当时,所以函数有零点需满足,即.二、适当处理后能够简化运算:.解:注意到函数的定义域为, 所以恒成立恒成立, 设, 则, -2分 当时,对恒成立,所以是上的增函数, 注意到,所以时,不合题意.-4分 当时,若,;若,. 所以是上的减函数,是上的增函数, 故只需. -6分 令, , 当时,; 当时,. 所以是上的增函数,是上的减函数. 故当且仅当时等号成立. 所以当且仅当时,成立,即为所求. 三、放缩后,求参数范围4、设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围(1)时,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,而,于是当时,.由可得.从而当时,故当时,而,于是当时,.综合得的取值范围为.5、(2014年二测)解()由题知,当时,当时,-3分所以函数的增区间为,减区间为,其极大值为,无极小值-5分()由题知, 当时,因为,由知函数在单调递增,所以,符合题意;-7分 当时,取,可得,这与函数在单调递增不符;9分 当时,因为,由知函数在单调递减, 所以,即只需证,即证, 即,令, 则对恒成立, 所以为上的减函数,所以, 所以,符合题意-11分 综上:为所求-12分6、(2013年辽宁)已知函数(I)求证: (II)若恒成立,求实数取值范第一问略:专心-专注-专业

    注意事项

    本文(导数恒成立解答题的几种处理方法(共6页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开