欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    一维抛物线偏微分方程数值解法(共7页).doc

    • 资源ID:13860675       资源大小:243.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一维抛物线偏微分方程数值解法(共7页).doc

    精选优质文档-倾情为你奉上 一维抛物线偏微分方程数值解法(2)上一篇文章请参看 一维抛物线偏微分方程数值解法(1)解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法)Ut-Uxx=0, 0<x<1,0<t<=1(Ut-aUxx=f(x,t),a>0) U(x,0)=ex, 0<=x<=1,U(0,t)=et,U(1,t)=e(1+t), 0<t<=1精确解为:U(x,t)=e(x+t);Matlab程序: (此为向后差分法)function u p e x t=pwxywxh(h1,h2,m,n)%欧拉向后差分法解一维抛物线型偏微分方程%此程序用的是追赶法解线性方程组%h1为空间步长,h2为时间步长%m,n分别为空间,时间网格数%p为精确解,u为数值解,e为误差x=(0:m)*h1+0;t=(0:n)*h2+0;for(i=1:n+1) for(j=1:m+1) f(i,j)=0; endendfor(i=1:n+1) u(i,1)=exp(t(i); u(i,m+1)=exp(1+t(i);endfor(i=1:m+1) u(1,i)=exp(x(i);endr=h2/(h1*h1);for(i=2:n+1) %外循环,先固定每一时间层,每一时间层上解一线性方程组% a(1)=0;b(1)=1+2*r;c(1)=-r;d(1)=u(i-1,2)+h2*f(i,2)+r*u(i,1); for(k=2:m-2) a(k)=-r;b(k)=1+2*r;c(k)=-r;d(k)=u(i-1,k+1)+h2*f(i,k+1); %输入部分系数矩阵,为0的矩阵元素不输入% end a(m-1)=-r;b(m-1)=1+2*r;d(m-1)=u(i-1,m)+h2*f(i,m)+r*u(i,m+1); for(k=1:m-2) %开始解线性方程组 消元过程 a(k+1)=-a(k+1)/b(k); b(k+1)=b(k+1)+a(k+1)*c(k); d(k+1)=d(k+1)+a(k+1)*d(k); end u(i,m)=d(m-1)/b(m-1); %回代过程% for(k=m-2:-1:1) u(i,k+1)=(d(k)-c(k)*u(i,k+2)/b(k); endendfor(i=1:n+1) for(j=1:m+1) p(i,j)=exp(x(j)+t(i); %p为精确解 e(i,j)=abs(u(i,j)-p(i,j);%e为误差 endendu p e x t=pwxywxh(0.1,0.005,10,200);surf(x,t,e); xlabel('x');ylabel('t');zlabel('e');>> title('误差曲面'); plot(t,e)误差较之前的欧拉向前差分格式 增长了两倍u p e x t=pwxywxh(0.1,0.05,10,20);plot(t,e)u p e x t=pwxywxh(0.01,0.05,100,20);plot(t,e)u p e x t=pwxywxh(0.01,0.01,100,100);plot(t,e)u p e x t=pwxywxh(0.01,0.005,100,200);plot(x,e)u p e x t=pwxywxh(0.01,0.005,100,200);plot(t,e)u p e x t=pwxywxh(0.005,0.005,200,200);plot(x,e)X=1时,出现了误差?? 不是边界条件吗?不能理解 这方法还是比前一种方法误差大呀不过可以随便改变时间、空间步长专心-专注-专业

    注意事项

    本文(一维抛物线偏微分方程数值解法(共7页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开