均匀弦振动实验报告(共4页).doc
精选优质文档-倾情为你奉上实验八 固定均匀弦振动的研究XY弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。实验目的1. 了解均匀弦振动的传播规律。2. 观察行波与反射波互相干涉形成的驻波。3. 测量弦上横波的传播速度。4. 通过驻波测量,求出弦的线密度。实验仪器XY型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。AOOO/2XXXt=T/2t=T/4t=0B图 4-8-1实验原理设有一均匀金属弦线,一端由弦码A支撑,另一端由弦码B支撑。对均匀弦线扰动,引起弦线上质点的振动,假设波动是由A端朝B端方向传播,称为行波,再由B端反射沿弦线朝A端传播,称为反射波。行波与反射波在同一条弦线上沿相反方向传播时将互相干涉,移动弦码B到适当位置。弦线上的波就形成驻波。这时,弦线就被分成几段,且每段波两端的点始终静止不动,而中间的点振幅最大。这些始终静止的点称为波节,振幅最大的点称为波腹。驻波的形成如图4-8-1所示。设图4-8-1中的两列波是沿x轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。下面用简谐表达式对驻波进行定量描述。设沿x轴正方向传播的波为行波,沿x轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x=0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: 式中A为简谐波的振幅,f为频率,为波长,x为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 4-8-1由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振动幅为,即驻波的振幅只与质点的位置x有关,与时间t无关。由于波节处振幅为零,即 (k=0, 1, 2, 3, )可得波节位置: (4-8-2)而相邻两波节之间的距离为: (4-8-3)又因为波腹处的质点振幅为最大,即 (k=0, 1, 2, 3, )可得波腹的位置为: (4-8-4)这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻波节(或相邻两波腹)间的距离,就能确定该波的波长。在本实验中,由于固定弦的两端是由弦码支撑的,故两端点成为波节,所以,只有当弦线的两个固定端之间的距离L(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:L= (k=0, 1, 2, 3, )。由此可得沿弦线传播的横波波长为: (4-8-5)式中k为弦线上驻波的波腹数,即半波数。根据波动理论,弦线横波的传播速度为: (4-8-6)则: (4-8-7)式中T为弦线中张力,为弦线单位长度的质量,即线密度。根据波速、频率及波长的普遍关系式,将4-8-5式代入可得: (4-8-8)再由(4-8-6)、(4-8-7)式可得: (k=0, 1, 2, 3, ) (4-8-9)则: (k=0, 1, 2, 3, ) (4-8-10)123451kg2kg3kg4kg5kg图 4-8-3 确定张力悬挂砝码60cm接收线圈驱动线圈吉它弦弦码音箱砝码槽型杠杆(改变弦的张力)信号发生器示波器图 4-8-2由上式可知,当给定T、L时,频率f只有满足该式时,才能产生驻波。为此,调节信号发生器的频率,使之与这些频率一致时,弦线产生共振,弦上便形成驻波。实验内容一、 用示波器观察弦振动现象和张紧弦线振动的简振模式。1. 设置两个弦码之间的距离为60cm,在张力杠杆挂1kg的砝码(将砝码置于张力杠杆上不同的槽内可改变弦线的张力,如图4-8-3所示),调整张力杠杆水平调节旋钮,使杠杆水平(张力杠杆水平是根据悬挂物质量精确确定弦的张力的必要条件,每改变一次砝码位置,都要调节张力杠杆水平调节旋钮,使张力杠杆保持水平)。2. 在距弦码5cm处放置驱动线圈,置探测线圈于弦线中央(初始位置)。3. 驱动线圈和接收线圈分别与函数信号发生器、示波器连接,如图4-8-2所示。4. 设置示波器通道增益为5mV/cm,并由函数信号发生器的信号触发示波器。5. 令函数信号发生器输出频率在100Hz200Hz之间,非常缓慢地调整函数信号发生器的输出频率,当达到共振频率时,应当看到弦的振动及听到弦的振动引发的声音最大,示波器显示波形应当是清晰的正弦波,如果看不到振动或听不到声音,稍稍增大函数发生器的输出振幅或改变一下接收线圈的位置重新试验(注意:驱动线圈与接收线圈至少保持10cm的距离)。6. 用示波器观察弦波现象,并验证张紧弦线振动的简正模式(L = k/2)。二、测定金属弦线的线密度和张紧弦线上横波的传播速度v1. 选取一个固定的频率f,张力T由砝码的质量得,调节弦码以改变弦线长度L,使弦线上依次出现一个、两个、三个稳定且明显的驻波段,记录相应的f、k、L的值,由公式(4-8-9)计算弦线的线密度。2. 选取一个固定的频率f,改变张力的大小(通过改变砝码在张力杠杆上的位置改变张力),分别为1kg、2kg、3kg、4kg、5kg,在各张力的作用下调节弦长L,使弦线上出现稳定明显的驻波段。记录相应的f、k、L的值,由公式(4-8-8)计算弦线上横波的传播速度v。3. 在张力一定的条件下,改变频率f分别为100Hz、120Hz、140Hz、160Hz、180Hz,移动弦码,调节弦长L,使弦线上出现2个稳定且明显的驻波段。记录相应的f、k、L的值,由公式(4-8-8)可间接测量出弦线上横波的传播速度。注意事项1. 改变挂在弦线一端的砝码后,要使砝码稳定后再测量。2. 在移动弦码调整驻波时,驱动线圈应在两弦码之间,且接收线圈不能处于波节位置,要等波形稳定后,再记录数据。预习思考题1. 固定弦线的两端形成波节还是波腹?2. 用示波器观察驻波时,接收线圈放任何位置都可以吗?思考题1. 张紧弦线上形驻波的条件是什么?2. 线密度与弦线横波的传播速度有什么关系?专心-专注-专业