欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    多元回归程序MATLAB程序(共18页).doc

    • 资源ID:13893642       资源大小:196KB        全文页数:17页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多元回归程序MATLAB程序(共18页).doc

    精选优质文档-倾情为你奉上matlab回归(拟合)总结前言1、学三条命令polyfit(x,y,n)-拟合成一元幂函数(一元多次)regress(y,x)-可以多元, nlinfit(x,y,fun,beta0) (可用于任何类型的函数,任意多元函数,应用范围最广,最万能的)2、同一个问题,这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。相当于咨询多个专家。3、回归的操作步骤:根据图形(实际点),选配一条恰当的函数形式(类型)-需要数学理论与基础和经验。(并写出该函数表达式的一般形式,含待定系数)-选用某条回归命令求出所有的待定系数。所以可以说,回归就是求待定系数的过程(需确定函数的形式)一、多元回归分析对于多元线性回归模型(其实可以是非线性,它通用性极高):设变量的n组观测值为记 ,则 的估计值为排列方式与线性代数中的线性方程组相同(),拟合成多元函数-regress使用格式:左边用b=b, bint, r, rint, stats右边用=regress(y, x)或regress(y, x, alpha)-命令中是先y后x, -须构造好矩阵x(x中的每列与目标函数的一项对应)-并且x要在最前面额外添加全1列/对应于常数项-y必须是列向量-结果是从常数项开始-与polyfit的不同。)其中: b为回归系数,的估计值(第一个为常数项),bint为回归系数的区间估计,r: 残差 ,rint: 残差的置信区间,stats: 用于检验回归模型的统计量,有四个数值:相关系数r2、F值、与F对应的概率p和残差的方差(前两个越大越好,后两个越小越好),alpha: 显著性水平(缺省时为0.05,即置信水平为95%),(alpha不影响b,只影响bint(区间估计)。它越小,即置信度越高,则bint范围越大。显著水平越高,则区间就越小)(返回五个结果)-如有n个自变量-有误(n个待定系数),则b 中就有n+1个系数(含常数项,-第一项为常数项)(b-b的范围/置信区间-残差r-r的置信区间rint-点估计-区间估计 如果的置信区间(bint的第行)不包含0,则在显著水平为时拒绝的假设,认为变量是显著的*(而rint残差的区间应包含0则更好)。b,y等均为列向量,x为矩阵(表示了一组实际的数据)必须在x第一列添加一个全1列。-对应于常数项。相关系数r2越接近1,说明回归方程越显著;(r2越大越接近1越好)F越大,说明回归方程越显著;(F越大越好)与F对应的概率p越小越好,一定要P<a时拒绝H0而接受H1,即回归模型成立。乘余(残差)标准差(RMSE)越小越好(此处是残差的方差,还没有开方)(前两个越大越好,后两个越小越好)重点:regress(y,x) 重点与难点是如何加工处理矩阵x。 y是函数值,一定是只有一列。也即目标函数的形式是由矩阵X来确定如s=a+b*x1+c*x2+d*x3+e*x12+f*x2*x3+g*x12,一定有一个常数项,且必须放在最前面(即x的第一列为全1列)X中的每一列对应于目标函数中的一项(目标函数有多少项则x中就有多少列)X=ones, x1, x2, x3, x1.2, x2.*x3,x1.2 (剔除待定系数的形式)regress: y/x顺序,矩阵X需要加工处理nlinfit: x/y顺序,X/Y就是原始的数据,不要做任何的加工。(即regress靠矩阵X来确定目标函数的类型形式(所以X很复杂,要作很多处理) 而nlinfit是靠程序来确定目标函数的类型形式(所以X就是原始数据,不要做任何处理)例1 测16名成年女子的身高与腿长所得数据如下:身高143145146147149150153154155156157158159160162164腿长8885889192939395969897969899100102配成y=a+b*x形式 x=143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164' y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102' plot(x,y,'r+')z=x;x=ones(16,1),x;-常数项b,bint,r,rint,stats=regress(y,x);-处结果与polyfit(x,y,1)相同b,bint,stats得结果:b = bint = -16.0730 -33.7071 1.5612-每一行为一个区间 0.7194 0.6047 0.8340stats = 0.9282 180.9531 0.0000即;的置信区间为-33.7017,1.5612, 的置信区间为0.6047,0.834; r2=0.9282, F=180.9531, p=0.0。p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.b,bint,r,rint,stats=regress(Y,X,0.05);-结果相同b,bint,r,rint,stats=regress(Y,X,0.03);polyfit(x,y,1)-当为一元时(也只有一组数),则结果与regress是相同的,只是命令中x,y要交换顺序,结果的系数排列顺序完全相反,x中不需要全1列。ans =0.7194 -16.0730-此题也可用polyfit求解,杀鸡用牛刀,脖子被切断。3、残差分析,作残差图:rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点(而剔除)4、预测及作图:plot(x,y,'r+') hold on a=140:165; b=b(1)+b(2)*a;plot(a,b,'g')例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程t (s)1/302/303/304/305/306/307/30s (cm)11.8615.6720.6026.6933.7141.9351.13t (s)8/309/3010/3011/3012/3013/3014/30s (cm)61.4972.9085.4499.08113.77129.54146.48法一:直接作二次多项式回归 t=1/30:1/30:14/30; s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;p,S=polyfit(t,s,2)p =489.2946 65.8896 9.1329得回归模型为 :方法二-化为多元线性回归:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1), t', (t.2)' %?是否可行?等验证.-因为有三个待定系数,所以有三列,始于常数项b,bint,r,rint,stats=regress(s',T);b,statsb = 9.1329 65.8896 489.2946stats =1.0e+007 * 0.0000 1.0378 0 0.0000得回归模型为 : %结果与方法1相同polyfit-一元多次regress-多元一次-其实通过技巧也可以多元多次regress最通用的,万能的,表面上是多元一次,其实可以变为多元多次且任意函数,如x有n列(不含全1列),则表达式中就有n+1列(第一个为常数项,其他每项与x的列序相对应)。例3 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量.需求量10075807050659010011060收入1000600 1200500300400130011001300300价格5766875439选择纯二次模型,即 -用户可以任意设计函数x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;y=100 75 80 70 50 65 90 100 110 60'X=ones(10,1) x1' x2' (x1.2)' (x2.2)' %10指有10组数据,x1' x2' (x1.2)' (x2.2)'时方程的自变量b,bint,r,rint,stats=regress(y,X)b,stats b = 110.5313 0.1464 -26.5709 -0.0001 1.8475stats = 0.9702 40.6656 0.0005 20.5771故回归模型为:剩余标准差为4.5362, 说明此回归模型的显著性较好.三、非线性回归(拟合)使用格式:beta = nlinfit(x,y, 程序名,beta0) beta,r,J = nlinfit(X,y,fun,beta0)X给定的自变量数据,Y给定的因变量数据,fun要拟合的函数模型(句柄函数或者内联函数形式), beta0函数模型中待定系数估计初值(即程序的初始实参)beta返回拟合后的待定系数其中beta为估计出的回归系数;r为残差;J为Jacobian矩阵输入数据x、y分别为n*m矩阵和n维列向量,对一元非线性回归,x为n维列向量。可以拟合成任意函数。最通用的,万能的命令x,y顺序,x不需要任何加工,直接用原始数据。-所编的程序一定是两个形参(待定系数/向量,自变量/矩阵:每一列为一个自变量)结果要看残差的大小和是否有警告信息,如有警告则换一个b0初始向量再重新计算。本程序中也可能要用.* ./ .如结果中有警告信息,则必须多次换初值来试算.难点是编程序与初值存在的问题:不同的beta0,则会产生不同的结果,如何给待定系数的初值以及如何分析结果的好坏,如出现警告信息,则换一个待定系数试一试。因为拟合本来就是近似的,可能有多个结果。1:重点(难点)是预先编程序(即确定目标函数的形式,而regress的目标函数由x矩阵来确定,其重难点为构造矩阵a)2:x/y顺序列向量-x/y是原始数据,不要做任何修改3:编程: 一定两个形参(beta,x)a=beta(1); b=beta(2);c=beta(3); x1=x(:,1); x2=x(:,2); x3=x(:,3); 即每一列为一个自变量4:regress/nlinfit都是列向量5:regress:有n项(n个待定系数),x就有n列;nlinfit:有m个变量则x就有m列例1 已知数据:x1=0.5,0.4,0.3,0.2,0.1; x2=0.3,0.5,0.2,0.4,0.6; x3=1.8,1.4,1.0,1.4,1.8;y=0.785,0.703,0.583,0.571,0.126;且y与x1,x2 , x3关系为多元非线性关系(只与x2,x3相关)为: y=a+b*x2+c*x3+d*(x2.2)+e*(x3.2)此函数是由用户根据图形的形状等所配的曲线,即自己选定函数类型求非线性回归系数a , b , c , d , e 。(1)对回归模型建立M文件model.m如下:function yy=myfun(beta,x) %一定是两个参数:系数和自变量-一个向量/一个矩阵a=beta(1)b=beta(2)c=beta(3)d=beta(4)e=beta(5)x1=x(:,1); %系数是数组,b(1),b(2),b(n)依次代表系数1, 系数2, 系数nx2=x(:,2); %自变量x是一个矩阵,它的每一列分别代表一个变量,有n列就可以最多nx3=x(:,3);yy=beta(1)+beta(2)*x2+beta(3)*x3+beta(4)*(x2.2)+beta(5)*(x3.2);(b(i)与待定系数的顺序关系可以任意排列,并不是一定常数项在最前,只是结果与自己指定的相对应)(x一定是一列对应一个变量,不能x1=x(1),x2=x(2),x3=x(3))(2)主程序如下:x=0.5,0.4,0.3,0.2,0.1;0.3,0.5,0.2,0.4,0.6;1.8,1.4,1.0,1.4,1.8' %每一列为一个变量,如果是倒入数据矩阵,只能把x的数据倒进去,不能把全部数据都倒进去,然后选某几列y=0.785,0.703,0.583,0.571,0.126'beta0=1,1, 1,1, 1,1' %有多少个待定系数,就给多少个初始值。beta,r,j = nlinfit(x,y,myfun,beta0)beta = -0.4420 5.5111 0.3837 -8.1734 -0.1340例2混凝土的抗压强度随养护时间的延长而增加,现将一批混凝土作成12个试块,记录了养护日期(日)及抗压强度y(kg/cm2)的数据: 养护时间:x =2 3 4 5 7 9 12 14 17 21 28 56 抗压强度:y =35+r 42+r 47+r 53+r 59+r 65+r 68+r 73+r 76+r 82+r 86+r 99+r 建立非线性回归模型,对得到的模型和系数进行检验。 注明:此题中的+r代表加上一个-0.5,0.5之间的随机数 模型为:y=a+k1*exp(m*x)+k2*exp(-m*x); -有四个待定系数Matlab程序:x=2 3 4 5 7 9 12 14 17 21 28 56; r=rand(1,12)-0.5; y1=35 42 47 53 59 65 68 73 76 82 86 99; y=y1+r ;myfunc=inline('beta(1)+beta(2)*exp(beta(4)*x)+beta(3)*exp(-beta(4)*x)','beta','x'); beta=nlinfit(x,y,myfunc,0.5 0.5 0.5 0.5); %初值为0.2也可以,如为1则不行,则试着换系数初值-此处为一元,x,y行/列向量都可以a=beta(1),k1=beta(2),k2=beta(3),m=beta(4)%test the modelxx=min(x):max(x);2:56yy=a+k1*exp(m*xx)+k2*exp(-m*xx); plot(x,y,'o',xx,yy,'r') %,xx,yy,'r'是画曲线,相当于拟合结果: a = 87.5244 k1 = 0.0269 k2 = -63.4591 m = 0.1083 图形:例3 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大.我们希望知道使用次数与增大的容积之间的关系.对一钢包作试验,测得的数据列于下表:使用次数增大容积使用次数增大容积234567896.428.209.589.509.7010.009.939.991011121314151610.4910.5910.6010.8010.6010.9010.76对将要拟合的非线性模型y= aeb/x,(如再加y= c*sin(x)+aeb/x)建立m-文件volum.m如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x);或function f= volum (beta,x)a=beta(1);b=beta(2);f=a*exp(b./x);2、输入数据:主程序:x=2:16;y=6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76;plot(x,y,'*-') beta0=8 2' beta,r ,J=nlinfit(x',y','zhang1',beta0)3、求回归系数:beta = 11.6037 -1.0641即得回归模型为:4、预测及作图: plot(x,y,'ro') hold onxx=2:0.05:16; yy=zhang1(beta,xx);%-通过调用用户自编的函数plot(xx,yy,'g') % 拟合成线或者YY,delta=nlpredci('zhang1',x',beta,r ,J)plot(x,y,'k+',x,YY,'r')或plot(x,y,'ro')hold onxx=2:0.05:16;yy=beta(1)*exp(beta(2)./xx); plot(xx,yy,'g')例4 财政收入预测问题:财政收入与国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资等因素有关。,试构造预测模型。财政收入预测问题:财政收入与国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资等因素有关。下表列出了1952-1981年的原始数据,试构造预测模型。年份国民收入(亿元)工业总产值(亿元)农业总产值(亿元)总人口(万人)就业人口(万人)固定资产投资(亿元)财政收入(亿元)195259834946157482207294418419535864554755879621364892161954707520491602662183297248195573755852961465223289825419568257155566282823018150268195783779857564653237111392861958102812355986599426600256357195911141681509672072617333844419601079187044466207258803805061961757115643465859255901382711962677964461672952511066230196377910465146917226640852661964943125058470499277361293231965115215816327253828670175393196613221911687745422980521246619671249164769776368308141563521968118715656807853431915127303196913722101688806713322520744719701638274776782992344323125641971178031567908522935620355638197218333365789871773585435465819731978368485589211366523746911974199336968919085937369393655197521214254932924213816846269219762052430995593717388344436571977218949259719497439377454723197824755590105896259398565509221979270260651150975424058156489019802791659211949870541896568826198129276862127373280496810解 设国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资分别为x1、x2、x3、x4、x5、x6,财政收入为y,设变量之间的关系为:y= ax1+bx2+cx3+dx4+ex5+fx6使用非线性回归方法求解。1  对回归模型建立M文件model.m如下: function yy=model(beta0,X) %一定是两个参数,第一个为系数数组,b(1),b(2),b(n) %分别代表每个系数,而第二个参数代表所有的自变量, %是一个矩阵,它的每一列分别代表一个自变量。 a=beta0(1); b=beta0(2); %每个元素 c=beta0(3); d=beta0(4); e=beta0(5); f=beta0(6); x1=X(:,1); %每一列 x2=X(:,2); x3=X(:,3); x4=X(:,4); x5=X(:,5); x6=X(:,6); yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6; 2. 主程序liti6.m如下:X=598.00, 349.00 ,461.00, 57482.00, 20729.00, 44.00;586, 455, 475, 58796, 21364, 89;707, 520, 491, 60266, 21832, 97;737, 558, 529, 61465, 22328, 98;825, 715, 556, 62828, 23018, 150;837, 798, 575, 64653, 23711, 139;1028, 1235, 598, 65994, 26600, 256;1114, 1681, 509, 67207, 26173, 338;1079, 1870, 444, 66207, 25880, 380;757, 1156, 434, 65859, 25590, 138;677, 964, 461, 67295, 25110, 66;779, 1046, 514, 69172, 26640, 85;943, 1250, 584, 70499, 27736, 129;1152, 1581, 632, 72538, 28670, 175;1322, 1911, 687, 74542, 29805, 212;1249, 1647, 697, 76368, 30814, 156;1187, 1565, 680, 78534, 31915, 127;1372, 2101, 688, 80671, 33225, 207;1638, 2747, 767, 82992, 34432, 312;1780, 3156, 790, 85229, 35620, 355;1833, 3365, 789, 87177, 35854, 354;1978, 3684, 855, 89211, 36652, 374;1993, 3696, 891, 90859, 37369, 393;2121, 4254, 932, 92421, 38168, 462;2052, 4309, 955, 93717, 38834, 443;2189, 4925, 971, 94974, 39377, 454;2475, 5590, 1058, 96259, 39856, 550;2702, 6065, 1150, 97542, 40581, 564;2791, 6592, 1194, 98705, 41896, 568;2927, 6862, 1273, , 73280, 496;y=184.00 216.00 248.00 254.00 268.00 286.00 357.00 444.00 506.00 . 271.00 230.00 266.00 323.00 393.00 466.00 352.00 303.00 447.00 . 564.00 638.00 658.00 691.00 655.00 692.00 657.00 723.00 922.00 . 890.00 826.00 810.0'beta0=0.50 -0.03 -0.60 0.01 -0.02 0.35;betafit = nlinfit(X,y,'model',beta0)结果为betafit = 0.5243 -0.0294 -0.6304 0.0112 -0.0230 0.3658(结果也可能是:0.3459 -0.0180 -0.3700 0.0030 -0.0020 0.4728)即y= 0.5243x1-0.0294x2-0.6304x3+0.0112x4-0.0230x5+0.3658x6此题也可以用regress来求解(我自己做的,不一定对?)-结果有些不同,含有一个常数>> clear>> x=xlsread('cz.xls'); %已经把所有的有效数据拷入到cd.xls文件中去了。>> y=x(:,7);>> x(:,7)= ;>> z=ones(30,1);>> x=z,x;>> b,bint,r,rint,states=regress(y,x);>> b,statesb = 159.1440 0.4585 -0.0112 -0.5125 0.0008 -0.0028 0.3165stats = 1.0e+003 * 0.0010 0.2283 0 1.0488四、非线性回归或曲线回归问题配曲线的一般方法是:(一)先对两个变量x和y 作n次试验观察得画出散点图,散点图(二)根据散点图确定须配曲线的类型.通常选择的六类曲线如下:(1)双曲线 (2)幂函数曲线y=a, 其中x>0,a>0(3)指数曲线y=a其中参数a>0.(4)倒指数曲线y=a其中a>0,(5)对数曲线y=a+blogx,x>0(6)S型曲线(三)然后由n对试验数据确定每一类曲线的未知参数a和b.解例2.由散点图我们选配倒指数曲线y=a根据线性化方法,算得由此 最后得 专心-专注-专业

    注意事项

    本文(多元回归程序MATLAB程序(共18页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开