有理数乘方讲义教案(共6页).doc
精选优质文档-倾情为你奉上有理数的乘方引入:棋盘上的数学古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒,一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”设计意图: 通过创设故事和问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。猜想第64格的米粒是多少? 第1格: 1 第2格: 2第3格: 4=2×2=22第4格: 8=2 ×2 ×2=23第5格: 16= 2 ×2 ×2 ×2=2463个2第64格=2×2×······×2=263 【知识点二】乘方的意义乘方:求n个相同因数a的积的运算叫做乘方 a·a··a=an 指数幂底数an读作a的n次幂(或a的n次方)。其中a是底数,n是指数。 【例1】把下列各数写成乘方的形式(1) (-6)×(-6) ×(-6) (2) (3)2×2×2×2变式训练读出下列个数,并指出其中的底数和指数1) 在(9)7中,底数是 ,指数是 ,读作 ,或读作 ;2) 在83中,底数是 ,指数是 ,读作 ,或读作 ;3) 在 中,底数是 ,指数是 ,读作 ;4) 在24中,底数是 ,指数是 ;5)在 5 中,底数是 ,指数是 。【知识点三】有理数乘方的运算法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数;【例2】计算1)(-3)4 2)-34)4))(-1)11【例3】计算并对比 = _ = _ (-1)2n=_ (-1)2n-1=_【知识点四】科学记数法:科学记数法的的定义:我们把大于10的数记成a×10n 的形式,其中a是整数数位只有一位的数(即1a<10),n是正整数。这种记数法叫做科学记数法。(1)引入:10,100 ,1000,10000,能写成10() 2、(2)300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、160 000 000 000这个数可能表示为 ,(强调a的范围)【例4】1、将下列大数用科学记数法表示(1)地球表面积约为510 000 000 000 000 平方米,地球上陆地的面积大约为平方米;(2)2002年,中国有劳动力约为人,失业下岗人员约为人;每年新增劳动 人,进城找工的农民约人。2、下列用科学记数法表示的数,原来各是什么数:(1)2003年10月15日,中国首次进行载人航天飞行,神舟五号飞船绕地球飞行了14圈,行程约为6×105千米;(2)一套辞海大约有1.7×107个字。(3)1972年3月发射的“先驱者十号”是人类发往太阳系外的第一艘人造太空探测器,至2003年2 月人们最后一次收到它发回的信号时,它离地球1.22×1011千米。 课堂练习选择题1、118表示( )A、11个8连乘 B、11乘以8 C、8个11连乘 D、8个别1相加2、32的值是( )A、9 B、9 C、6 D、63、下列各对数中,数值相等的是( )A、 32 与 23 B、23 与 (2)3 C、32 与 (3)2 D、(3×2)2与3×224、下列说法中正确的是( )A、23表示2×3的积 B、任何一个有理数的偶次幂是正数 C、32 与 (3)2互为相反数 D、一个数的平方是,这个数一定是5、下列各式运算结果为正数的是( ) A、24×5 B、(12)×5 C、(124)×5 D、1(3×5)66、如果一个有理数的平方等于(2)2,那么这个有理数等于( ) A、2 B、2 C、4 D、2或27、一个数的立方是它本身,那么这个数是( ) A、 0 B、0或1 C、1或1 D、0或1或18、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A、正数 B、负数 C、 非负数 D、任何有理数9、24×(22)×(2) 3=( ) A、 29 B、29 C、224 D、22410、两个有理数互为相反数,那么它们的次幂的值( ) A、相等 B、不相等 C、绝对值相等 D、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A、正数 B、负数 C、正数或负数 D、奇数12、(1)2001(1)2002÷(1)2003的值等于( ) A、0 B、 1 C、1 D、213、 2009年中央预算用于教育、医疗卫生、社会保障、就业等方面的民生支出达到7285亿元,用科学记数法表示为( ) A. 7285×108´元 B 72.85×1010´元 C 7.285×1011´元 D 0.7285×1012 ´元 14、 广东省2009年重点建设项目计划(草案)显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A 7.26×1010´元 B 72.6×109´元 C 0.726×1011´元 D 7.26×1011´元 15、 据沈阳日报报道,今年前四个月辽宁省进出口贸易总值达164亿美元164亿美元用科学记数法可以表示为( ) A 16.4×10亿美元 B 1.64×102亿美元 C 16.4×102亿美元 D 1.64×103亿美元 计算(1) (2) (3) (4) (5) (6) 2.解下列方程:(1)5x=15 (2)4x=20 (3)6x=45 (4)7x=解答题1、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?2、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?3、 你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,如此往复下去,对折10次,会拉出多少根面条?4.一只小虫沿一条东西方向放着的木杆爬行,先以每分钟25米的速度向东爬行,后来又以这个速度向西爬行,试求它向东爬行3分钟,又向西爬行5分钟后距出发点的距离5. 某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6若该地地面温度为21,高空某处温度为39,求此处的高度是多少千米?探究题1、你能求出的结果吗?2、若是最大的负整数,求的值。3、若与互为倒数,那么与是否互为倒数?与是否互为倒数?4、若与互为相反数,那么与是否互为相反数?与是否互为相反数? 教案 精品文档专心-专注-专业