欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    专题突破立体几何之《立体几何中的最值问题》(共5页).doc

    • 资源ID:13912274       资源大小:663.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题突破立体几何之《立体几何中的最值问题》(共5页).doc

    精选优质文档-倾情为你奉上立体几何中的最值问题考点动向高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练例如图,在直三棱柱中,底面为直角三角形,是上一动点,则的最小值为 解析考虑将立体几何问题通过图形变换,转化为平面几何问题解答解连结,沿将展开与在同一个平面内,如图所示,连,则的长度就是所求的最小值通过计算可得,又故,由余弦定理可求得例 如图,在四棱锥中,底面,为直角,分别为的中点(I)试证:平面;(II)设,且二面角的平面角大于,求的取值范围解析对(I),可以借助线面垂直的判定定理,或者借助平面的法向量及直线的方向向量解答;对(II),关键是确定出所求二面角的平面角解法(I)证:由已知且为直角,故是矩形,从而又底面,故由三垂线定理知在中,分别为,的中点,故,从而,由此得面(II)连接交于,易知为的中点,连接,则在中易知又因底面,故底面在底面中,过作,垂足为,连接,由三垂线定理知,从而为二面角的平面角设,则在中,有以下计算,考虑底面的平面图(如图),连接,因,故在中,因,得而,从而得因此故知是锐角,故要使,必须,解之得,的取值范围为解法(I)如图,以为原点,所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,设,则易知点,的坐标分别为,从而,故设,则,而为中点,故,从而,故由此得(II)设在平面上的投影为,过作垂足为,由三垂线定理知从而为二面角的平面角由得,设,则,由得,即又因,且与的方向相同,故,即由解得,从而由知是锐角,由,得,即故的取值范围为规律小结立体几何中的最值与范围,需要首先确定最值或范围的主体,确定题目中描述的相关变动的量,根据必要,可确定是利用几何方法解答,还是转化为代数(特别是函数)问题解答其中的几何方法,往往是进行翻折变换,这时可以想象实际情形,认为几何体是利用硬纸等折成的,可以动手翻折的,在平时做练习时,不妨多动手试试,培养自己的空间想象能力,在考试时就可以不动手,动脑想就可以了特别注意变动的过程,抓住变动的起始与终了等特殊环节考点误区分析()这类问题容易成为难点,关键是学生的空间想象能力缺乏,或者对问题的转化方向不明确因此,要注意常见的转化方向,如化立体几何问题为平面几何问题,或化立体几何问题为代数问题等,根据题目特征进行转化()对题目所描述的情形没有清醒的认识也是造成错解的主要原因,注意产生量的变化的主要原因是什么,相关的数量和位置关系都做怎样的变化,抓住问题的关键,才能顺利解决问题同步训练如图,在直三棱柱中, ,分别为的中点,沿棱柱的表面从到两点的最短路径的长度为 有两个相同的直三棱柱,高为,底面三角形的三边长分别为用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则的取值范围是_如图,正四面体的棱长为1,棱平面,则正四面体上的所有点在平面内的射影构成的图形面积的取值范围是 参考答案解析分别将沿折到平面上;将沿折到平面上;将沿折到平面上;将沿折到平面上,比较其中长即可答案解析可知,全面积最小的是四棱柱面积为,全面积最小的是三棱柱面积为,解即可答案解析当所在的直线与平面平行时,所求射影面积最大,为;当所在的直线与平面垂直时,所求射影面积最小,可求得为答案专心-专注-专业

    注意事项

    本文(专题突破立体几何之《立体几何中的最值问题》(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开