欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    一元二次方程全教案(共25页).doc

    • 资源ID:13941851       资源大小:203.50KB        全文页数:25页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一元二次方程全教案(共25页).doc

    精选优质文档-倾情为你奉上21.1 一元二次方程 一、 教学内容:认识一元二次方程 二、 教材分析:教科书先以一个设计人体雕像的实际问题作为开篇,并在第一节又给出两个实际问题,通过建立方程,并引导学生思这些方程的共同特点,从而归纳得出一元二次方程的概念、一般形式,给出一元二次方程根的概念在这个过程,通过归纳具体方程的共同特点,定义一元二次方程的概念,体现了研究代数学问题的一般方法 一般形式也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;三、 学情分析:初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一特点,一方面要运用直观生动的生活实例,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。促进学生个性发展。从认知基础上看,学生已经学习了一元一次方程、平方根、因式分解等知识,为本章的学习奠定了基础。学生在利用方程解决实际问题的过程中,会发现仅用这些知识是不能够解决的,因此迫切的需要一元二次方程这个解决问题的工具。 四、 教学目标(一)知识与技能1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根(二)过程与方法通过根据实际问题列方程,向学生渗透知识来源于生活.(三)情感态度价值观通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.五、 教学重难点教学重点:一元二次方程的一般形式和一元二次方程的根的概念教学难点:通过提出问题,建立一元二次方程的数学模型 六、 教学方法和手段:讲授法、练习法七、 学法指导讲授指导八、 教学过程一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念.二、探究新知(一)探究课本问题2分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x个队参赛,如何用含x的代数式表示全部比赛场数?整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;(二)概念归纳:1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2.2.一元二次方程的一般形式:为什么规定0?方程左边各项之间的运算关系是什么?关于x的一元二次方程的各项分别是什么?各项系数是什么?3.特殊形式:;(三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号.(四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,43.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0(2)x2+1=0 (3)x2-3x=0 (4)4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程的根是8和-7,但是答案只能有一个,应该是哪个?九、 课堂小结1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根.十、 作业布置P4练习1十一、 板书设计21.1 一元二次方程一元二次方程 :二次项、一次项、常数项、二次项系数、一次项系数: 十二、 教学反思21.2.1配方法一、 教学内容:用配方法解一元二次方程二、 教材分析:对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次。三、 学情分析:他们有强烈的好奇心和求知欲。当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法姐一元二次方程奠定了基础。四、 教学目标:(一)知识与技能1会用配方法解简单的数字系数的一元二次方程。2了解用配方法解一元二次方程的基本步骤。(二)过程与方法1理解配方法;知道“配方”是一种常用的数学方法。2会用配方法解简单的数字系数的一元二次方程。3能说出用配方法解一元二次方程的基本步骤。(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力。五、 教学重难点:教学重点:用配方法求解一元二次方程。教学难点:理解配方法。六、 教学方法和手段:讲练结合法。七、 学法指导:讲授指导、讲练指导八、 教学过程:回顾与复习1:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。用配方法解一元二次方程的方法的助手:平方根的意义:如果x2=a,那么x=±。完全平方式:式子 a2±2abb2叫完全平方式,且a2±2abb2=(a±b)2回顾与复习2:用配方法解一元二次方程的步骤:1、 移项:把常数项移到方程的右边;2、 配方:方程两边都加上一次项系数绝对值一半的平方;3、 变形:方程左边分解因式,右边合并同类项;4、 开方:根据平方根的意义,方程两边开平方;5、 求解:解一元一次方程;6、 定解:写出原方程的解。随堂练习:用配方法解下列方程:1. x22=0 2.x24x=23. 3 x28 x3=0这个方程与前2个方程不一样的是二次项系数不是1,而是3。基本思想是:如果能转化成前2个方程的形式,则方程即可解决。你想到了什么办法?例2 解方程:3 x28 x3=0解:3 x28 x3=0x2x1=0 1、化1:把二次项系数化为1;x2x=1 2.移项:把常数项移到方程的右边; x2x()2=1()2 3 . 配方:方程两边都加上一次项系数 绝对值一半的平方; (x)2=()2 4. 变形:方程左边分解因式, 右边合并同类项;x=± 5. 开方:根据平方根的意义,方程两 边开平方;x= 或 x= 6. 求解:解一元一次方程;所以x1=, x2=3 7. 定解:写出原方程的解。心动不如行动:用配方法解下列方程 13x2 9x2=0 22x26=7x 做一做:一个小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系: h=15t5t2,小球何时能达到10m高?解:根据题意,得:15t5t2=10即t23t=2t23t()2=2()2(t)2=即t= 或t=所以t1=2, t2=1答:在1s时,小球达到10m;至最高点后下落,在2s时其高度又为10m。九、 课堂小结本节复习了哪些旧知识呢?继续请两个“老朋友”助阵和加深对“配方法”的理解运用:平方根的意义:如果x2=a,那么x=±。完全平方式:式子 a2±2abb2叫完全平方式,且a2±2abb2=(a±b)2本节课又学会了哪些新知识呢? 用配方法解二次项系数不是1的一元二次方程的步骤:1、 化1:把二次项系数化为1;2、 移项:把常数项移到方程的右边;3、 配方:方程两边都加上一次项系数绝对值一半的平方;4、 变形:方程左边分解因式,右边合并同类项;5、 开方:根据平方根的意义,方程两边开平方;6、 求解:解一元一次方程;7、 定解:写出原方程的解。用一元二次方程这个模型来解答或解决生活中的一些问题(即列一元二次方程解应用题)。十、 作业布置P9习题2十一、 板书设计:课题:配方法1回顾与复习平方根的意义:如果x2=a,那么x=±。完全平方式:式子 a2±2abb2叫完全平方式,且a2±2abb2=(a±b)22随堂练习用配方法解下列方程:1. x22=0 2.x24x=23. 3 x28 x3=03例2 解方程:3 x28 x3=04用配方法解下列方程 13x2 9x2=0 22x26=7x 5做一做6小结7作业十二、 教学反思21.2.2公式法一、 教学内容:用公式法解一元二次方程二、 教材分析:数学是一种逻辑性很强的科目,有一定的规律可寻,而探索与猜想不仅要体现数学知识的应用,而且要注重在观察实践中抽象出规律。在计算量较大时 ,规律的探索显得更加重要,本节课是一元二次方程求根公式的推导和应用,通过引导学生自主探究推导出公式,按照:质疑猜想类比探索归纳应用的教学流程,让学生进一步体会公式法由配方法产生,且优于配方法,从而达到知识正迁移的目的。三、 学情分析:本节是在学生已经掌握了配方法解一元二次方程的基础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元二次方程。四、 教学目标:(一)知识教学点1、了解一元二次方程求根公式的推导2、会利用公式法解一元二次方程(二)能力训练点 通过配方法解一元二次方程的过程,进一步加强推理技能训练,同时发展学生的逻辑思维能力。(三)德育渗透点向学生渗透由特殊到一般的唯物辩证法思想。五、 教学重点、难点、关键点1、教学重点:一元二次方程的求根公式的推导过程2、教学难点:灵活地运用公式法解一元二次方程3、教学关键点:(1)掌握配方法的基本步骤(2)确定求根公式中 a 、 b 、 c 的值六、 教学方法和手段讲授法、练习法七、 学法指导讲授指导八、 教学过程  (一) 创设情境,导入新课:前面我们己学习了用配方法解一元二次方程,想不想再探索一种比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来研究。 教师;下面我们先用配方法解下列一元二次方程学生;(每组一题,每组派一名同学板演)12x2-4x-1=0 2. x2+1.5=-3x3 4. 4x2-3x+2=0完成后小组内进行交流,并进行反馈矫正。学生:总结用配方法解一元二次方程的步骤教师板书:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解。教师:通过以上四个方程的求解,你能试着猜想一下上述问题的求解的一般规律吗?学生:独立思考(二)新知探索教师:作进一步引导,如果每一个一元二次方程都通过配方法解,那么计算就较繁杂,针对于一般的一元二次方程ax2+bx+c=0(a0) 能否也用配方法导出一般求解模式呢?动手试一试。学生:动手亲自解方程ax2+bx+c=0(a0)找一名同学板演。教师:巡视,作个别点评,辅导。教师:现在我们大家共同观察黑板上的探索过程x2+bx+c=0(a0)ax2+bx=-c教师:这是配方法中的哪一个过程学生:移项x2+x=-教师:这是配方法中的哪一个过程学生:将二次项的系数化为1x2+x+()2=-+()2 即(x+)2=教师:这是配方法中的哪一个过程学生:配方 教师:这是什么运算学生:开平方运算教师:有条件限制吗?学生: 有 当0时,才可以开平方教师:在什么才能大于或等于0?学生:(思考、回答)因为a0所以a20,如果使0,那么只有b2-4ac 0教师:如果 b2-4ac<0 时,可以进行开平方运算吗?学生:不可以,因为负数没有平方根 教师:同学们推导的都很好,那么我们来总结一下,在用配方法解ax2+bx+c=0(a0)时,需注意什么?学生:畅所欲言九、 课堂小结对于ax2+bx+c=0(a0),当 b2-4ac 0 时,在这里我们把 称为一元二次方程的求根公式,用公式可以直接解一元二次方程。 十、 布置作业:教材12页 习题1十一、 板书设计 §21.2.2 一元二次方程的解法 用求根公式法解一元二次方程 公式法:_ 例题讲解:_ 公式法的步骤:_ 学生练习:_ 注意事项:_十二、 教学反思 21.2.3因式分解法一、 教学内容:用因式分解法解一元二次方程二、 教材分析:本节内容是多项式因式分解中一部分较基本的知识和基本的方法.它包括因式分解的有关概念,因式分解的常用基本方法.因式分解在代数学习中具有基础作用.它在代数的恒等变换,分式的通分,约分以及解方程方面都起着重要作用.通过学习,可以培养学生的观察;分析;运算能力.这部分知识对学生后续学习将起到重要的基础作用.三、 学情分析:对于一元二次方程的解法学生基本掌握。大多数学生喜欢用求根公式,但存在的问题是部分学生根式的化简不熟练导致方程的求解不彻底。在本节课中,结合学生的实际,让学生通过复习教材,完成课前导学知识,逐步启发、引导学生课前自主预习、小组合作学习.。四、 教学目标(一)知识与技能1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.(二)过程与方法经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.(三)情感态度价值观体验解决问题方法的多样性,灵活选择解方程的方法.五、 教学重难点:教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程教学难点:将整理成一般形式的方程左边因式分解六、 教学方法和手段讲授法、小组讨论法七、 学法指导讲授指导八、 教学过程一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法.二、探究新知1.因式分解x2-5x; 2x(x-3)-5(x-3); 25y2-16; x2+12x+36;4x2+4x+12.若ab=0,则可以得到什么结论?3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解.4. 试求下列方程的根、4x2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0、25y2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2、x2+10x+25=0 9x2-24x+16=0;、5x2-2x-= x2-2x+ 2x2+12x+18=0;分析:观察三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法.中的方程结构较复杂,需要先整理.5.选用合适方法解方程 x2+x+=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:已知(x+y)2 x-y=0,求x+y的值下面一元二次方程解法中,正确的是( ) A(x-3)(x-5)=10×2,x-3=10,x-5=2,x1=13,x2=7 B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1= ,x2= C(x+2)2+4x=0,x1=2,x2=-2 Dx2=x 两边同除以x,得x=1今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a20m)九、 课堂小结本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程十、 作业布置P14练习1十一、 板书设计21.2.3因式分解法因式分解:练习:十二、 教学反思21.2.4一元二次方程的根与系数关系一、 教学内容:一元二次方程的根与系数关系二、 教材分析:本节课在教材中是初中数学九年级第一学期一元二次方程中的重要内容之一,他是在研究一元二次方程的求根公式之后对于一元二次方程根与系数关系的进一步的拓展与研究。他是今后研究一元二次方程的根与系数问题的重要依据,同时也为高中直线与圆锥曲线的位置关系打下了坚实的基础。三、 学情分析:本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。四、 教学目标:(一)知识与技能熟练掌握一元二次方程的根与系数关系.提高学生综合运用基础知识分析解决较复杂问题的能力.(二)过程与方法灵活运用一元二次方程的根与系数关系解决实际问题.(三)情感态度价值观学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明五、 教学重难点:教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导六、 教学方法和手段:讲授法、观察归纳法七、 学法指导:讲授指导八、 教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2), q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1 、x2. 的和与积.x2+3x+2=0; x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1 、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1 、x2. 的和与积.3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;5x-1=4x2;5x2-1=4x2+x6.拓展练习已知一元二次方程2x2+bx+c=0的两个根是-1,3,则b= ,c= .已知关于x的方程x2+kx-2=0的一个根是1,则另一个根是 ,k的值是 .若关于x的一元二次方程x2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= .分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.两个根均为负数的一元二次方程是( ) A.4x2+21x+5=0 B.6x2-13x-5=0 C.7x2-12x+5=0 D.2x2+15x-8=0.两根异号,且正根的绝对值较大的方程是( )A.4x2-3=0 B.-3x2+5x-4=0 C.0.5x2-4x-3=0 D.2x2+x-=0.若关于x的一元二次方程2x2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x1 ,x2是方程3x2-2x-4=0的两根,利用根与系数的关系求下列各式的值:; ; ;九、 课堂小结本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,0;3.韦达定理的应用常见题型:不解方程,判断两个数是否是某一个一元二次方程的两根;已知方程和方程的一根,求另一个根和字母系数的值;由给出的两根满足的条件,确定字母系数的值;判断两个根的符号;不解方程求含有方程的两根的式子的值.十、 作业设计P16练习1十一、 板书设计21.2.4一元二次方程的根与系数关系1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,0;十二、 教学反思21.3实际问题与一元二次方程一、 教学内容:实际问题与一元二次方程二、 教材分析:教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。三、 学情分析:1、知识掌握方面:学生对列方程解应用题的一般步骤已经熟悉,适合由特殊到一般的探究方式。 2、学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。容易开发他们的主观能动性,适合自主探究、合作交流的数学学习方式。四、 教学目标:(一)知识与技能1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.(二)过程与方法通过根据实际问题列方程,向学生渗透知识来源于生活.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.(三)情感态度价值观经历观察,归纳列一元二次方程的一般步骤五、 教学重难点:教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程六、 教学方法和手段讲授法、练习法七、 学法指导:讲授指导八、 教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又 全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型三、课堂训练补充练习:一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( )A(1+25%)(1+70%)a元 B70%(1+25%)a元C(1+25%)(1-70%)a元 D(1+25%+70%)a元某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( )A Bp C D2009年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ) A100(1+x)2=250 B100(1+x)+100(1+x)2=250 C100(1-x)2=250 D100(1+x)2九、 课堂小结1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题十、 作业布置P22综合运用4/5/6十一、 板书设计21.3实际问题与一元二次方程十二、 教学反思专心-专注-专业

    注意事项

    本文(一元二次方程全教案(共25页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开