欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人脸识别matlab程序(共5页).doc

    • 资源ID:13944509       资源大小:22KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人脸识别matlab程序(共5页).doc

    精选优质文档-倾情为你奉上人脸识别% FaceRec.m% PCA 人脸识别修订版,识别率88% calc xmean,sigma and its eigen decompositionallsamples=;%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:ORLs',num2str(i),'',num2str(j),'.jpg');% imshow(a);b=a(1:112*92); % b 是行矢量 1×N,其中N10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=allsamples; b; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean' % M * M 阶矩阵v d=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p);endi=1;% (训练阶段)计算特征脸形成的坐标系base = xmean' * vsort(:,1:p) * diag(dsort(1:p).(-1/2);% base 是N×p 阶矩阵,除以dsort(i)(1/2)是对人脸图像的标准化(使其方差为1)% 详见基于PCA 的人脸识别算法研究p31% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)(1/2)是对人脸图像的标准化(使其方差为1)% 详见基于PCA 的人脸识别算法研究p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%end% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoorallcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数,accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别% 测试过程for i=1:40for j=6:10 %读入40 x 5 副测试图像a=imread(strcat('e:ORLs',num2str(i),'',num2str(j),'.jpg');b=a(1:10304);b=double(b);tcoor= b * base; %计算坐标,是1×p 阶矩阵for k=1:200mdist(k)=norm(tcoor-allcoor(k,:);end;%三阶近邻dist,index2=sort(mdist);class1=floor( (index2(1)-1)/5 )+1;class2=floor(index2(2)-1)/5)+1;class3=floor(index2(3)-1)/5)+1;if class1=class2 && class2=class3class=class1;elseif class1=class2class=class1;elseif class2=class3class=class2;end;if class=iaccu=accu+1;end;end;end;accuracy=accu/200 %输出识别率特征人脸% eigface.mfunction = eigface()% calc xmean,sigma and its eigen decompositionallsamples=;%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:ORLs',num2str(i),'',num2str(j),'.jpg');% imshow(a);b=a(1:112*92); % b 是行矢量 1×N,其中N10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=allsamples; b; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean' % M * M 阶矩阵v d=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p);endp = 199;% (训练阶段)计算特征脸形成的坐标系%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)(1/2)是对人脸图像的标准化,详见基于PCA 的人脸识别算法研究p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%endbase = xmean' * vsort(:,1:p) * diag(dsort(1:p).(-1/2);% 生成特征脸for (k=1:p),temp = reshape(base(:,k), 112,92);newpath = 'd:test' int2str(k) '.jpg'imwrite(mat2gray(temp), newpath);endavg = reshape(samplemean, 112,92);imwrite(mat2gray(avg), 'd:testaverage.jpg');% 将模型保存save('e:ORLmodel.mat', 'base', 'samplemean');人脸重建% Reconstruct.mfunction = reconstruct()load e:ORLmodel.mat;% 计算新图片在特征子空间中的系数img = 'D:test210.jpg'a=imread(img);b=a(1:112*92); % b 是行矢量 1×N,其中N10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);b=b-samplemean;c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量% 根据特征系数及特征脸重建图% 前15 个t = 15;temp = base(:,1:t) * c(1:t)'temp = temp + samplemean'imwrite(mat2gray(reshape(temp, 112,92),'d:test2t1.jpg');% 前50 个t = 50;temp = base(:,1:t) * c(1:t)'temp = temp + samplemean'imwrite(mat2gray(reshape(temp, 112,92),'d:test2t2.jpg');% 前100 个t = 100;temp = base(:,1:t) * c(1:t)'temp = temp + samplemean'imwrite(mat2gray(reshape(temp, 112,92),'d:test2t3.jpg');% 前150 个t = 150;temp = base(:,1:t) * c(1:t)'temp = temp + samplemean'imwrite(mat2gray(reshape(temp, 112,92),'d:test2t4.jpg');% 前199 个t = 199;temp = base(:,1:t) * c(1:t)'temp = temp + samplemean'imwrite(mat2gray(reshape(temp, 112,92),'d:test2t5.jpg');专心-专注-专业

    注意事项

    本文(人脸识别matlab程序(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开