欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    对数概念教学设计(共8页).doc

    • 资源ID:13982937       资源大小:333.50KB        全文页数:8页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    对数概念教学设计(共8页).doc

    精选优质文档-倾情为你奉上基于数学史的对数概念教学设计教材 人教A版普通高中数学必修一2.2.1【课时安排】第1课时教材分析 本节包括对数概念、对数与指数的互化和对数的运算性质,这是学生学习对数函数的基础.教材借助例题中的指数函数,由“已知底数和幂的值,求指数”直接引出对数的概念.这种引入方式虽然直截了当地指出指数和对数的互逆关系,但是对于大部分学生而言太过于抽象,学生难以通过定义了解对数是如何计算,和它最初是如何被发明的,也就很难体会到对数强大的简化运算的功能,以及引入对数的必要性.学情分析 1. 认知基础:学生已学习了指数的知识,以及加法和减法、乘法和除法、乘方与开方之间的互逆关系,因此可以较容易地接受指数与对数的互逆关系,并由此得到对数的概念.2认知障碍:用对数符号来表示指数.教学目标1 知识与技能 理解对数的概念(即:对数是一个数,底的次幂等于真数)以及指数与对数的互逆关系.2. 过程与方法(1)经历对数概念的提出过程,学习将乘法和除法转化为指数的加减以及乘方和开方转化为指数的乘除运算的化归思想;(2)通过类比减法、除法、开方运算学习对数概念的过程,学习类比思想和垂直数学化的思想.3. 情感态度与价值观(1)感受引入对数十分必要;(2)领悟对数强大的简化运算的功能;(3)体会对数源于生活中数学运算的需要,它有较高的科学价值和应用价值.教学重点:理解对数的概念以及指数与对数的互逆关系.教学难点:对数概念;底数和真数的限制条件.关键: 把当成一个数,底的次幂等于真数.教学方法:问题驱动、引导探究.教学手段:计算机、PPT、几何画板.教学流程设计问题引入探究发现变式思考形成概念巩固运用设计意图:通过一组运算量较大的计算题使学生产生认知障碍,结合对数产生的历史背景,使学生体会到现实生活对数学发展的推动作用,激发学生寻找新的运算方法的动力.设计意图:在学生尚未形成对数的概念时,先给出一组比较特殊的数字,通过寻找规律并将其运用到化简计算的探究过程,使学生初步体会到对数在化简一些复杂计算时的作用.设计意图:对算式进行变形,激发学生继续思考的动力.回顾数学史上对数表的发明,使学生了解数学家在解决问题的过程中所做的努力,培养学生锲而不舍的探究精神和科学态度.设计意图:通过类比数的运算的发展规律,引出对数,揭示指数和对数的互逆关系,培养学生的类比思想.通过分析底数和真数的限制条件,使学生更深刻地理解对数的概念,强化指数和对数的联系.设计意图:根据桑代克的练习律与斯金纳的强化原理设计该练习,使学生熟练掌握指数式和对数式的互化.知识拓展设计意图:通过介绍科学家们对对数的高度评价和对数在科学领域的广泛应用,使学生了解对数的科学价值和应用价值.小结及作业设计意图:小结意在巩固本节课所学知识,回顾探索历程,学习数学思想;作业意在使学生进一步熟悉对数的概念及指数和对数的互化. 教学过程设计 (一)问题引入问题1:请计算下面的式子(不使用计算器):(1) (2) (3) (4)教师活动:请学生回答计算结果并谈谈计算的感受.学生活动:计算并发表感受(计算量大).历史上,科学家也曾经遇到相同的问题!背景介绍1:在16世纪,随着哥白尼“日心说”的盛行,天文学也蓬勃发展.欧洲人渐渐热衷于地理探险和海洋贸易,特别是地理探险需要更准确的天文知识,需要对庞大的“天文数据”进行快速和准确的计算.但那时候还没有计算机,人们迫切需要找到一种方法提高运算效率.那该怎么办呢?设计意图:通过一组运算量较大的计算题使学生产生认知障碍,结合对数产生的历史背景,使学生体会到现实生活对数学发展的推动作用,激发学生寻找新的运算方法的动力.(二)探究发现问题2:阅读下列资料,回答问题: 1714年,德国数学家斯蒂菲尔研究了下面的两行数:012345678910111213141248163264128256512102420484096819216384 请大家想一想,斯蒂菲尔会发现其中什么规律呢?学生活动:思考并发现规律.教师活动:归纳结论:若设第一行的数为的话,那么第二行对应的数则为.问题3:后来,英国数学家纳皮尔受到这个表格的启发,发现了可以利用这个规律来简便计算问题1中的题目!同学们,你们知道他是怎么做的吗?学生活动:思考问题并进行猜想.教师活动:肯定学生的发现,并总结纳皮尔的发现:第一列数的加减运算结果与第二列数的乘除运算结果之间存在着对应关系.例如,要计算,则计算其对应的第一行的数5和8的和得到13,再找到13对应的第二行的结果8192即可.引导学生给出简化算法:(1) ;(2) ;(3) ;(4) .问题4:这四个式子的运算方法有什么共同特点吗?学生活动:思考问题,并尝试作出回答.教师活动:补充学生的想法,共同特点:把每个要运算的数转化为.这样就可以将整数的乘法、除法、乘方和开方转化为对应指数的加法、减法、乘法和除法,起到简化简运算的作用.设计意图:在学生尚未形成对数的概念时,先给出一组比较特殊的数字,通过寻找规律并将其运用到化简计算的探究过程,使学生初步体会到对数在化简一些复杂计算时的作用. (三)变式思考问题5:把原来的第(1)问改成,还能否用同样的方法解决呢?学生活动:可能质疑原来的方法行不通,也可能想到利用非整数的指数幂. 教师活动:根据前面的分析,要判断能否用同样的方法,就要看132和156能否写成.由指数函数的图象和性质可知,指数函数的值域为,对于132和156,都存在唯一对应的值.通过几何画板的动态展示,将132和156分别表示成,再用同样的方法即可解出近似解.这就给了当时的科学家一个启示:如果制作出了足够多组数的表格,就可以利用它来计算类似的问题了.而历史上许多数学家为了这项工作奉献了毕生的精力.背景介绍2:纳皮尔就花了20多年的时间编制出这样的表格,不过他选取的底数不是2,而是一个较复杂的数.后来英国数学家布里格斯专程拜访了纳皮尔,建议将底数改为10,符合人们使用十进制的习惯.于是,他花了大量时间和精力,终于在1617年编制了以10为底的表格,以供人们计算较大的数据.下图就是布里格斯所编制的表格(部分示例).N以10为底N以10为底10.00080.19420.39890.93230.966101.00040.796111.82250.602121.76260.364131.68370.426 总结:编制这样表格的关键,就是对于每一个,令,再把表示出来. 设计意图:对算式进行变形,激发学生继续思考的动力.回顾数学史上对数表的发明,使学生了解数学家在解决问题的过程中所做的努力,培养学生锲而不舍的探究精神和科学态度. (四)形成概念在刚刚的探究中,我们发现简化运算不一定以2为底,也可以以其它数为底,如布里格斯就是以10为底.一般地,可以以为底,这样化简运算的关键是:给定,对于每个,把写成.问题6:如何将中的准确表示出来呢?学生活动:不知所措,有预习的学生可能会说用对数来表示.问题7:观察数的运算的发展,思考问题:(1)已知,求(2)已知,求(3)已知,求(4)已知,求 ?学生活动:观察并思考问题.教师活动:提出概念:一般地,如果,那么数叫做以为底的对数,记作,其中叫做对数的底数,叫做真数.在此,强调“对数是一个数”!.根据定义,可以得到对数和指数间的关系:当时,.通常,我们将以10为底的对数叫做常用对数,并把记为.将以为底的对数称为自然对数,把记为.背景介绍3:由此可知,对数是指数的逆运算.但有趣的是,在数学史上,对数却是先于指数被发现的.1614年,纳皮尔发明了对数和对数表.1637年,法国数学家笛卡儿发明了指数,比对数晚了20多年,当时人们并没有发现指数和对数之间的关系.后来,数学家欧拉才提出“对数源于指数”,这一说法得到了数学家们的广泛认可.至此,对数逐渐得到完善,成为我们今天所用的对数.设计意图:通过观察数的运算的发展规律,类比联想到提出新的概念来解决新的运算问题,引出对数,揭示指数和对数的互逆关系,培养学生的类比思想.问题8:为什么对数的定义中要满足底数,呢?学生活动:思考问题并回答.教师活动:提示学生根据指数和对数的互逆关系,举反例分析限制条件. 当,在实数范围内没有意义,即找不到对应的使得;当,时,是没有意义的;同理可得的情况.而指数函数的定义域为,所以的取值范围是.总结:负数和零没有对数.设计意图:通过分析对数定义中的底数和真数的限制条件,使学生更深刻地理解对数的概念,强化指数和对数的联系. (五)巩固运用 问题9:根据对数的定义,计算: (1);(2);(3);(3).学生活动:通过上面的计算题,发现两个结论:,.教师活动:通过例题的讲解,强化对数的本质:对数是一个数!.例如,.问题10:求下列各式中的值: (1);(2);(3);(4).设计意图:通过练习题,让学生熟练掌握指数式和对数式的互化. (六)知识拓展 背景介绍4:自从有了计算机,对数在简化计算上的作用已经大大降低,但是它在现实生活中的应用却遍布各大领域:在生物领域,利用“半衰期”求生物死亡年数;在化学领域,对数用于测量PH值;在地理领域,对数用于计算地震强度;在物理领域,对数用于测量声音的分贝.总结:对数之所以有如此广泛的应用,是因为在这些领域涉及了复杂的运算,这就体现了对数强大的简化运算的功能! 这就难怪历史上许多科学家对对数的发明给予了高度评价: 拉普拉斯说:(对数)用缩短计算时间延长了天文学家的寿命.伽利略说:给我空间、时间及对数,我可以创造一个宇宙. 恩格斯说:对数的发明与解析几何的创立、微积分的建立是17世纪数学史上的3大成就. 设计意图:通过介绍对数在科学领域的广泛应用和科学家们对对数的高度评价,使学生了解对数的科学价值和应用价值. (七)小结及作业小结:(1); (2); (3); (4).实现简便运算的关键:就是把整数的乘法、除法、乘方和开方运算转化为指数的加法、减法、乘法和除法.这体现了重要的数学思想化归思想.一般地,可以以为底,把写成,即,那如何将准确表示出来呢?观察数的运算的发展:(1)已知,求(2)已知,求(3)已知,求(4)已知,求 对数!通过类比逆运算的关系和引入新的运算的解决方法,提出引入对数这个重要的概念.这体现了类比的数学思想.问:对数是什么? 对数是一个数!作业: 1上网搜索了解对数的发展史;2课本练习题P64 第1,2,3题.设计意图:小结意在巩固本节课所学知识,回顾探索历程,学习数学思想;作业意在使学生进一步熟悉对数的概念及指数和对数的互化. 附:本教学设计的创新之处1过去的“对数及其运算”的教学大多仅限于“知其然不知其所以然”或者说只会形式计算而不理解本质的水平.本设计从数学史的角度引入对数概念,实现了由工具性理解向关系性理解的转变提升;2从垂直数学化的角度引入对数概念,为弗赖登塔尔所倡导的数学化原则提供了一个具体的案例;3在“过程与方法”与“情感态度价值观”目标上实现了可操作的创新.致谢:感谢华南师范大学数学科学学院冯伟贞教授对本文的指导意见以及佛山市南海桂城中学蒋爱国教师对本文的文献帮助.参考文献1何小亚,姚静.中学数学教学设计M.北京:科学出版社,2012.2王华民,侯斌.从一堂概念课的不同导入谈数学史融入数学J.数学通报,2014,53(8):47-50.3陈少丽.对数的发明及其相关历史分析D.临汾:山西师范大学,2012.4陈军.对数(第一课时)教学设计J.数学通报.2010,(6):15-18.5李春艳,龙发山.对数的产生与发展J.恩施职业技术学院学报,2002,14(2):85-88.8、一个伟大的灵魂,会强化思想和生命。爱默生9、春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。吴玉章10、但愿每次回忆,对生活都不感到负疚郭小川11、人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来!奥斯特洛夫斯基12、你若要喜爱你自己的价值,你就得给世界创造价值。歌德 专心-专注-专业

    注意事项

    本文(对数概念教学设计(共8页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开