欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    递推数列特征方程法(共6页).doc

    • 资源ID:13983541       资源大小:272KB        全文页数:6页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    递推数列特征方程法(共6页).doc

    精选优质文档-倾情为你奉上递推数列特征方程一、问题的提出递推(迭代)是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和方法。在递推数列中占有重要一席的斐波那契数列,又称兔子数列,是学生非常乐意探讨的递推问题,许多学生都会不约而同地向教师提出,这个数列有通项公式吗?如有,怎样求它的通项公式?笔者就曾碰到过一位喜爱钻研的学生,带着参考书上的解法而向我请教:已知斐波那契数列),求通项公式。参考书上的解法是这样的:解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知, ,解之得,所以。这位学生坦率地表示,尽管参考书上介绍了利用特征方程求通项公式的一些结论,用上述方法得到的通项公式也是正确的,但他还是“看不懂”。换句话说,这种解法的依据是什么?特征方程是怎样来的?我虽然深知这是特征方程惹的祸,但由于现行教材只字未提特征方程,我也从未在课堂上作过补充,如果将有关利用特征方程求递推数列通项的一些结论直接呈现出来,或者以“高考不作要求”为由来搪塞,学生是难以接受的,也是不负责任的。面对一头雾水的数学尖子,我在充分肯定其善于思考、勇于探索的可贵品质的同时,也在苦苦寻觅解答这一问题的良策。其后不久,一次偶然的数学探究活动,竟使这一长期困惑我们教学活动的尴尬问题迎刃而解。二、研究与探索问题的解决源于对一阶线性递推数列通项公式的探求:若数列满足其通项公式的求法一般采用如下的参数法,将递推数列转化为等比数列:设 ,令,即,当时可得,知数列是以为公比的等比数列,将代入并整理,得.将上述参数法类比到二阶线性递推数列能得到什么结论?仿上,我们来探求数列的特征:不妨设,则, 令 (1) 若方程组有两组不同的实数解,则, ,即、分别是公比为、的等比数列,由等比数列性质可得, ,由上两式消去可得.(2) 若方程组有两组相等的解,易证此时,则,,即是等差数列,由等差数列性质可知,所以(限于学生知识水平,若方程组有一对共轭虚根的情况略)这样,我们通过参数方法,将递推数列转化为等比(差)数列,从而求得二阶线性递推数列的通项,若将方程组消去即得,显然、就是方程的两根,我们不妨称此方程为二阶线性递推数列的特征方程,于是我们就得到了散见于各种数学参考资料的如下结论:设递推公式为其特征方程为,1、 若方程有两相异根、,则;2、 若方程有两等根,则.其中、可由初始条件确定。这正是特征方程法求递推数列通项公式的根源所在,令,就可求得斐波那契数列的通项,真是“踏破铁蹄无觅处,得来全不费工夫”!将上述方法继续类比到分式线性递推数列(),看看又会有什么发现?仿照前面方法,等式两边同加参数,则 令,即 记此方程的两根为,(1) 若,将分别代入式可得 以上两式相除得,于是得到为等比数列,其公比为,数列的通项可由求得;(2)若,将代入式可得,考虑到上式结构特点,两边取倒数得 由于时方程的两根满足,于是式可变形为为等差数列,其公差为,数列的通项可由求得这样,利用上述方法,我们可以把分式线性递推数列转化为等比数列或等差数列,从而求得其通项。如果我们引入分式线性递推数列()的特征方程为,即,此特征方程的两根恰好是方程两根的相反数,于是我们又有如下结论:分式线性递推数列(),其特征方程为,即,1、若方程有两相异根、,则成等比数列,其公比为;2、若方程有两等根,则成等差数列,其公差为.值得指出的是,上述结论在求相应数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的思想方法更为重要。如对于其它形式的递推数列,我们也可借鉴前面的参数法,求得通项公式,其结论与特征方程法完全一致,有兴趣的读者不妨一试。三、应用举例例1、 已知数列且,求通项公式。解 设, 令 可得于是,即是以为首项、为公差的等差数列,从而.例2、设数列满足. 解: 对等式两端同加参数得令,解之得,代入上式得两式相除得即的等比数列,四、收获与反思 随着普通高中课程改革的逐步深入,要求广大教师在新课标理念指导下,大胆实施课堂教学改革。如何创造性地处理教学内容,无疑是一项十分现实的课题。由于数学知识呈现方式的多样性、解决问题策略的多选择性和数学思维的开放性,教师既要加强学习,不断充实自己的知识结构,做到高屋建瓴而游刃有余,还要不断提高驾驭教材的能力,“用好教材”、“超越教材”而不拘泥于教材,根据学生的实际情况,因材施教,使学生知其然,更知其所以然,帮助学生寻找适合自己的学习方式,“授人以鱼不如授之以渔”,在培养学生学习兴趣的同时激发学生的思维,时时体味“蓦然回首,那人却在灯火阑珊处”的美妙意境。专心-专注-专业

    注意事项

    本文(递推数列特征方程法(共6页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开