2017----2019高考真题小题专项训练:复数(共15页).docx
-
资源ID:13989016
资源大小:308.97KB
全文页数:15页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2017----2019高考真题小题专项训练:复数(共15页).docx
精选优质文档-倾情为你奉上2017-2019高考真题小题专项训练:复数一、单选题1设,则=A2BCD12设复数z满足,z在复平面内对应的点为(x,y),则ABCD3设z=i(2+i),则=A1+2iB1+2iC12iD12i4设z=-3+2i,则在复平面内对应的点位于A第一象限B第二象限C第三象限D第四象限5若,则( )ABCD6已知复数z=2+i,则ABC3D57在复平面内,复数的共轭复数对应的点位于A第一象限B第二象限C第三象限D第四象限8设,则ABCD9ABCD10ABCD11ABCD12设有下面四个命题:若复数满足,则;:若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为ABCD13下列各式的运算结果为纯虚数的是()ABCD14复数等于 ( )ABCD15(2017新课标全国卷II)ABCD16设复数z满足(1+i)z=2i,则z=A B C D217复平面内表示复数z=i(2+i)的点位于A第一象限B第二象限C第三象限D第四象限18若复数(1i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是A(,1)B(,1)C(1,+)D(1,+)19已知,是虚数单位,若,则( )A1或B或CD20已知i是虚数单位,若复数z满足,则=A-2iB2iC-2D2二、填空题21是虚数单位,则的值为_.22若复数满足,其中i是虚数单位,则的实部为_23i是虚数单位,复数_.24已知,为虚数单位,若为实数,则的值为_25已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是_2017-2019高考真题小题专项训练:复数参考答案1C【解析】【分析】先由复数的除法运算(分母实数化),求得,再求【详解】因为,所以,所以,故选C【点睛】本题主要考查复数的乘法运算,复数模的计算本题也可以运用复数模的运算性质直接求解2C【解析】【分析】本题考点为复数的运算,为基础题目,难度偏易此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C【详解】则故选C【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养采取公式法或几何法,利用方程思想解题3D【解析】【分析】本题根据复数的乘法运算法则先求得,然后根据共轭复数的概念,写出【详解】,所以,选D【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查理解概念,准确计算,是解答此类问题的基本要求部分考生易出现理解性错误4C【解析】【分析】先求出共轭复数再判断结果.【详解】由得则对应点(-3,-2)位于第三象限故选C【点睛】本题考点为共轭复数,为基础题目5D【解析】【分析】根据复数运算法则求解即可.【详解】故选D【点睛】本题考查复数的商的运算,渗透了数学运算素养采取运算法则法,利用方程思想解题6D【解析】【分析】题先求得,然后根据复数的乘法运算法则即得.【详解】 故选D.【点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题.7D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.8C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.10D【解析】分析:根据公式,可直接计算得详解: ,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.11D【解析】【分析】由复数的乘法运算展开即可。【详解】解: 故选D.【点睛】本题主要考查复数的四则运算,属于基础题。12B【解析】令,则由得,所以,故正确;当时,因为,而知,故不正确;当时,满足,但,故不正确;对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B.点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.13C【解析】 , , ,所以选C.14D【解析】【分析】根据复数的除法运算得到结果.【详解】2i.故选D.【点睛】这个题目考查了复数的除法运算,复数常考的还有几何意义,zabi(a,bR)与复平面上的点Z(a,b)、平面向量都可建立一一对应的关系(其中O是坐标原点);复平面内,实轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数涉及到共轭复数的概念,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z的共轭复数记作15B【解析】由题意,故选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.16C【解析】由题意可得: .本题选择C选项.17C【解析】,则表示复数的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如.其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应的点为、共轭复数为18B【解析】试题分析:设,因为复数对应的点在第二象限,所以,解得:,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可复数zabi复平面内的点Z(a,b)(a,bR)复数zabi(a,bR) 平面向量.19A【解析】由得,所以,故选A.【名师点睛】复数的共轭复数是,据此结合已知条件,求得的方程即可.20A【解析】由得,即,所以,故选A.【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2±2i;(2)i,i.21【解析】【分析】先化简复数,再利用复数模的定义求所给复数的模。【详解】。【点睛】本题考查了复数模的运算,是基础题.222【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.234i 【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.24-2【解析】为实数,则.【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可复数,当时,为虚数,当时,为实数,当时,为纯虚数.25【解析】【分析】利用复数的运算法则、模的计算公式即可得出【详解】解:复数z(1+i)(1+2i)12+3i1+3i,|z|故答案为【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如其次要熟悉复数相关概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为专心-专注-专业