化工工艺学复习要点(共38页).doc
精选优质文档-倾情为你奉上1 现代化学工业的特点是什么?P10-11 综合原料生产方法和产品的多样性复杂性;向大型化,综合化,精细化发展;多学科合作,技术密集型发展;重视能量的合理利用,积极采用节能技术;资金密集,投资大,利润高;安全和环保日益受到重视。2 化学工艺学的研究范畴是什么?P9其内容包括生产方法的评估,过程原理的阐述,工艺流程的组织,设备的选用和设计,以及生产过程中的节能环保和安全问题。3 何谓转化率?何谓选择性? 转化率(X):指某一反应物参加反应而转化的数量占该反应物起始量的分率或百分率。选择性(S):体系中转化成目的产物的某反应物量与参加所有反应而转化的该反应物总量之比。4 什么是生产能力?什么是生产强度? 生产能力:一个设备、一套装置或一个工厂在单位时间内生产的产品量, 或在单位时间内处理的原料量。 生产强度:设备的单位特征几何量的生产能力,即设备的单位体积的生产 能力,或单位面积的生产能力。5 催化重整流程中预加氢工序的作用? P45为了保护重整催化剂,必须对原料油进行加氢精制预处理。即石脑油与氢气在一定温度下通过预精制催化剂加氢,将其所含的硫、氮、氯及氧等,加氢转化为H2S、NH3、HCl和H2O,从石脑油中脱除;使烯烃加氢饱和;将金属有机物分解,金属吸附在催化剂的表面脱除。重整原料经预加氢精制后,杂质含量满足重整装置对进料的质量要求,确保了重整催化剂性能的充分发挥,实现催化重整装置的长期稳定运转。6 干气与湿气有何不同?一般来说,干气就是指甲烷含量比较高的天然气,湿气是指其中碳二到碳五等容易液化的组分较高,而不是水较多。7 氧化反应的特征是什么?P63强放热反应,必须严格控制反应温度,防范安全事故;反应途径多样,副产物多,分离困难;容易发生深度氧化,需要选择性优良的催化剂。8 生产硫酸的主要原料有哪些?我国生产硫酸的主要原料是什么?P66硫磺,冶炼烟气,硫铁矿和石膏,我国主要用硫铁矿,世界上广泛使用硫磺。9 环氧乙烷的生产方法有哪些?P110有两种,氯醇法和直接氧化法。10 丙烯氨氧化所采用的催化剂有哪些?P129主要有鉬系催化剂和锑系催化剂两类。Mo系为C-A型即P-Mo-Bi-O以及先进的C-41即P-Mo-Bi-Fe-Co-Ni-K-O七组分催化剂和C-49和C-89等多组分催化剂。Sb系催化剂有Sb-Fe-O,Sb-Sn-O以及Sb-U-O三种。11 工业上广泛使用的脱氢催化剂有哪些?P175贵金属,比如Pt,Rh,Pd;以及过渡金属比如Fe,Ni,Cr,Cu等;金属氧化物,主要有ZnO,NiO,Al2O3,Cr2O3,Fe2O3等;以及金属盐类,比如碳酸钾,碱土金属磷酸盐等。12 什么叫氧化脱氢反应?氧化脱氢反应中,氢的接受体有哪几种?P225不全如果在脱氢反应系统中加入能够和氢相结合的所谓氢“接受体”,随时去掉反应所生成的氢,这样就可使平衡向脱氢方向转移,转化率就可大幅度提高。这种类型的反应称为氧化脱氢反应。氧化脱氢反应氢的“接受体”:氧气(或空气)、卤素和含硫化物等。课本228,乙苯新技术。15 乙苯脱氢绝热反应器的改进措施有哪些?P222-225单端绝热反应器温度分布不合理造成转化率低等问题,70年代以来做了一下改进:首先采用几个单段绝热反应器串联,中间设加热炉补充热量;采用分别装入高选择性和转化率的两段绝热反应器以克服温度下降导致的转化率降低;采用多段径向绝热反应器,降低了反应器阻力,操作压力相应下降对乙苯脱氢有利,但设备较贵。其他还有应用绝热反应器和等温反应器联用技术,以及采用三段绝热反应器16 乙苯-苯乙烯精馏分离有什么特点?应当采取什么措施?P228乙苯-苯乙烯的分离是最关键的部分。由于两者的沸点只差9,分离时要求的塔板数比较多,另外苯乙烯在温度高的时候容易自聚,它的聚合速度随着温度的升高而加快。为了减少聚合反应的发生,除了在精馏塔内加阻聚剂以外,塔底温度还应控制在90以内,因此必须采用减压操作。17 贮存苯乙烯时有什么要求?P229 不全对苯乙烯的贮存要求为:1苯乙烯单体不能受污染物的污染; 2放置成品苯乙烯单体的贮槽,应基本上无铁锈和潮气;3贮存的苯乙烯要放在干燥而清洁的贮槽中,必须加阻聚剂,环境温度不应当高,保存期也不应当过长。18 丙烯腈和乙腈如何进行分离?P143因为两者沸点差只有4,所以不采用普通的蒸馏方法,而是要用萃取蒸馏,一般选用水为萃取剂,由于乙腈的极性比丙烯腈强,在水溶液中的挥发度更小,从而提高了分离的效率。19 合成氨中对排放气如何进行氢回收?P191排放气中除了惰性气体之外还有大量的氢气,回收方法有中空纤维膜分离,变压吸附和深冷分离技术20 什么是硫酸“两转两吸”工艺的“3+2”流程?P73二氧化硫氧化工艺中,氧化速度和转化率随温度的走势是相反的,为了在一定生产强度下保持转化率,就必须分段反应,但纵使这样转化率也不能达到99%,所以工业上采用分段转化后的炉气进入吸收工段,然后再进行下一个转化器,第二转化器出炉气体,进入第二吸收塔。这种二次转化,二次吸收的工艺就是所谓的二转二吸工艺,该工艺中第一次转化分三段温度反应,第二次转化分二段温度反应的流程就是“3+2”流程。21 乙烯环氧化银催化剂的组成情况如何?P113乙烯环氧化所用的银催化剂以有活性组分,助催化剂和载体三部分组成。其中银是活性组分,助催化剂有碱金属钾盐,用来提高催化剂选择性;碱土金属盐,比如钡盐能用来增强催化剂的抗熔结能力,提高热稳定性,延长其使用寿命。还有稀土金属元素。催化剂载体有碳化硅,氧化铝,这类催化剂比表面较小,孔隙率较大,拥有较好的导热性。22 乙烯环氧化制环氧乙烷的空气氧化法与氧气氧化法有何不同?P112 不全这两种氧化方法均采用列管式固定床反应器。反应器是关键设备,与反应效果密切相关,其反应过程基本相同,包括反应、吸收、汽提和蒸馏精制等工序。但是氧气氧化法与空气氧化法相比前者具有明显的优越性,主要体现在以下几个方面:1)工艺流程:为了防止空气中有害杂质带人反应器而影响催化剂的活性,空气法需要空气净化系统和二次反应器,以及尾气催化转化器与热量回收系统;氧气法需要分离装置和二氧化碳脱除系统。氧气氧化法与空气氧化法相比,前者工艺流程稍短,设备管道较少,建厂投资少。2)反应器:在同样生产规模的前提下,氧气法需要较少的反应器,而且,反应器都是并联操作。空气法需要有副反应器,以及二次吸收和汽提塔等,增加了设备投资。3)反应温度:氧气氧化法反应温度比空气法低,对催化剂寿命的延长和维持生产的平稳操作较为有利。4)收率和单耗:氧气法环氧乙烷收率高于空气法,因为放空少,乙烯单耗较低。5)催化剂:氧化法在这方面比较有利,因为选择性高,催化剂需要量少。综上所述,氧气氧化法无论是在生产工艺、生产设备、产品收率、反应条件上都具有明显的优越性,因此目前世界上的EO/EG装置普遍采用氧气氧化法生产。23 隔膜法工艺中,精制粗盐水的目的是什么?P239粗盐水精制的任务是除去食盐中含有的Ca2+、Mg2+、SO42-以及OH-等化学杂质及机械杂质,制得合格的精盐水,以保证电解槽的正常。24 为何原油在进入炼油装置前要脱盐脱水?P30-32水会增加燃料消耗和蒸馏塔顶的冷却器负荷,无机盐中以氯化物为主,这类化合物受热水解易生成盐酸,腐蚀设备,在换热器和炉管壁上结垢,增加热阻,甚至堵塞管路。另外盐类在重馏分油中的残留会影响油品的二次加工。25 为什么不能直接由稀硝酸通过蒸馏法制得浓硝酸?P86硝酸和水会形成共沸物,共沸点虽然随压力变化,但共沸组成是不变的,只有68.4%,所以不能直接由稀硝酸。26 生产浓硝酸的直接法、间接法和超共沸酸精馏法的基本原理是什么?P89直接法即由氨直接合成浓硝酸,其过程为以氨气为原料合成液态的NO2,液态NO2直接和水反应生成浓硝酸。该法基建投资较大,只在国内外大型工厂中采用。间接法是先生产稀硝酸加入硝酸镁等脱水剂将稀硝酸中水分脱除,将浓度提高至共沸酸浓度以上,最后经蒸馏得到98%成品硝酸。这种生产方法适宜于中小型浓硝酸生产装置,在国内外采用比较普遍。超共沸酸精馏法是使氧化气中水分脱除较多,使NOx直接生成超共沸酸,再经蒸馏制得浓硝酸的方法,被认为是制造浓硝酸的一种好方法27 简述离子膜法电解原理。P242本法采用的点击和隔膜法相同,只是用离子交换膜代替了隔膜法的石棉隔膜,离子交换膜具有很好的选择性,只有一价阳离子可以通过隔膜进入阴极室,而阴离子不能透过进入。所以在很好的隔开了氯气和氢气的同时,防止氯离子进入阴极室,OH-也不能进入阳极室,保证了氯气的纯度以及阴极室碱液中没有盐。28 丙烯腈生产工艺中,为什么要用稀硫酸吸收反应气中的氨?P139-140出流化床反应器的反应气体含有催化剂粉末,可溶的有机物和不容的惰性气体,所以可以用水吸收的办法对其分离。但是未反应的氨气如果不除去会使吸收水呈碱性,这会发生以下反应:氨气和丙烯腈生成胺类物质,氢氰酸和丙烯腈生成丁二腈,氢氰酸和丙烯醛在碱性条件下的自聚,氨气和反应气中的二氧化碳生成碳酸氢铵,堵塞管路。所以必须在水洗钱用稀硫酸吸收氨气,温度为80左右,再次温度和酸度下,丙烯腈等组分溶解度很小,不会造成产物的损失。29 简要说明接触法生产硫酸的四个工序。P67-68接触法是将焙烧得到的SO2和固体催化剂接触氧化为SO3,然后与水作用制得硫酸。其分为4个工序:首先是焙烧,焙烧有硫铁矿焙烧和硫黄焙烧。焙烧铁矿时在氧过量是可以全部转化矿石中的硫,弱阳焙烧则可以获得磁铁。焙烧广泛使用沸腾炉。第二是炉气精制,目的是出去各种杂质,分为水洗和酸洗两种,酸洗的废水用量较小,较多采用。地上那是转化,接触钒催化剂,将SO2转化为SO3。第四是吸收,用98.5%的硫酸吸收SO3制备浓硫酸和发言硫酸。30 影响氨平衡浓度的因素有哪些?P181平衡常数,总压,氢氮比,以及惰性气体含量有关。31 试述氨合成工艺的原则流程并进行简要的说明。P179-187原料气制备:将煤和天然气等原料制成含氮和氢的原料气,对煤可以制备合成气,然后对原料气进行净化,除去氮氢以外的CO2,硫和炭黑等杂质,这主要涉及到CO变换,将CO转换为H2,CO2用溶液脱除,最后用深冷脱除或者甲烷化法彻底除去CO和CO2;得到的纯净的氮气和氢气在高温高压Fe催化剂作用下生成氨气。32 氨催化氧化工艺条件是如何选择的?P95氨接触氧化的工艺,首先要保证有高的氧化率,这样可降低氨的消耗和硝酸的生产成本,常压下氧化率可达97%98.5%,加压下也可达96%97%;其次是应考虑有较高的生产强度和比较低的铂消耗,最大限度地提高铂网工作时间,从而达到操作的稳定性,生产的连续性。A温度 氨氧化生成一氧化氮虽在145时已开始,但到300400时生成量仍旧很少,主要还是生成单质氮(N2)和水蒸气。要使一氧化氮产率达到97%98%,反应温度必须不低于780。但反应温度过高,由于一氧化氮分解,一氧化氮产率不但不升高,还会有下降的可能,而且当反应温度高于920时,铂的损失将大大增加(主要是铂在高温下挥发加剧)。一般氨在常压下催化氧化温度控制在780840,加压下为870900。B压力 从反应本身看,操作压力对于一氧化氮的产率没有影响,加压氧化(如在0.81.0MPa下操作)比常压氧化的氧化率还要低1%2%,但铂催化剂的生产强度却因此而大为提高。但压力过高,加剧了气体对铂网的冲击,铂网的机械损失(摩擦、碰撞后变成粉末)增大,因此一般采用0.30.5Mpa。C接触时间 混合气体通过铂催化剂层的时间称为接触时间。为保证氨的氧化率达到最大值,接触时间不能太长(即气流线速度太慢),因为这要降低设备的生产能力,而且氨容易分解成单质氮,使氧化率降低。接触时间也不能太短,太短氨来不及氧化就离开铂催化剂层,同样会使氧化率降低。生产实践证实,常压下接触时间以10-4s左右为宜,加压以1.55×10-4s左右为宜。D混合气组成 提高混合气中氧的浓度,即增加催化剂表面原子氧的浓度,不仅可强化氨氧化反应,而且也有利于一氧化氮氧化成二氧化氮。但氨氧化反应加快,反应热增多,若温度控制不好,就会烧坏催化剂,甚至会酿成爆炸事故。由于达到1.7后,氧化率已递增不大,故一般将值维持在1.72.2之间,若采用非铂催化剂,由于它的活性较小,值应大于2,以保持足够的氨氧化速度,否则氧化率会急剧降低。E 爆炸及预防措施 当混合气中氨达到一定浓度时,可能会引起爆炸。在混合气中通入水蒸气,可使爆炸极限范围变窄,甚至消失。例如在混合气中通入10%以上的水蒸气时,在45的温度下已没有爆炸危险。因此在生产中一般都加入一定量的水蒸气,这样即使将氨浓度提高到13%14%也是安全的。为防止爆炸,必须严格控制操作条件,使气体均匀地通过铂网;合理设计接触氧化设备;添加水蒸气;消除引爆隐患(如设备应良好接地,不用铁器敲击管路和设备,不穿带铁钉的鞋,车间不准吸烟等)。33 丙烯腈生产中的氨中和塔的作用是什么?P140丙烯氨氧化制备丙烯腈的生产中,出反应器的气体组成中有易溶于水的有机物及不溶或微溶水的惰性气体,因此可以用水吸收法将它们分离。在用水吸收之前,必须先将反应气中剩余的氨除去,因为氨使吸收水呈碱性。在碱性条件下易发生以下反应: 氨和丙烯腈反应生成胺类物质;在碱性介质中HCN与丙烯腈反应生成丁二腈;在NH3存在下,粗丙烯腈溶液中的HCN容易自聚;在NH3存在下,丙烯醛也会发生聚合。溶解在水中的氨,能与反应气中的CO2反应生成碳酸氢铵,在吸收液加热解吸时,碳酸氢铵又被分解为氨和CO2而被解吸出来,再在冷凝器中重新化合成碳酸氢铵,造成冷凝器及管道堵塞。因此,在吸收过程之前,用稀硫酸吸收反应气中的氨是十分必要的。氨中和塔除脱氨外,还有冷却反应气的作用,在有些流程中也称急冷塔。34 简要说明焙烧、煅烧及烧结的特点。P256焙烧:矿石精矿在低于熔点的高温下,与空气氯气氢气等气体或添加剂起反应,改 变其化学组成与物理性质的过程称为焙烧。 煅烧:不需要添加剂的焙烧。将固体物料在低于熔点的温度下加热分解,出去二氧化碳 水分三氧化硫等挥发性物质的过程。 烧结:烧结是固相化学矿物配加其他氧化还原剂并添加助熔剂在高于炉料熔点下发生化学反应的过程。 35 影响焙烧的主要因素是什么?它们是如何影响的? P262温度影响,一般说温度越高,焙烧速率越快,但温度受到焙烧无熔结温度限制和设备的限制;固体原料粒度:接触面受到粒度大小影响,粒度小时速度快,但太小会增加工作量和粉尘,要适度;氧气含量:氧气含量达分子扩散的速率就快,焙烧就快。36 什么是浸取?如何选择浸取剂?P277浸取是用溶剂将固体中可溶组分提取出来的单元过程。浸取剂的选择要考虑浸取剂对溶质的选择性,减少溶液精制的费用,还要对溶质的饱和度大,再生时能量小,然后要考虑浸取剂的物质,比如沸点,密度,年度等,最后浸取剂的价格,毒性,燃烧爆炸腐蚀性也要考虑在内。37 影响矿物浸取速率的因素有哪些?它们是如何影响的?P278浸取速率随着温度上升而上升,随浸取剂浓度增加而增加,随矿石的粒度减小而增加,孔隙率和搅拌提高也能加快浸取速率。38 简述石灰石煅烧的基本原理。P269根据热力学原理计算,当温度达到1180K以上时,CO2的分压等于大气压,石灰石可以分解,实际煅烧温度在940-1200,这时石灰石分解速率大幅提高;煅烧是需要焦炭提供热量,且要严格控制空气含量。39 简要说明钙镁磷肥的生产原理。P275钙镁磷肥是用磷矿与硅酸镁矿物配制的原料,在电炉、高炉或平炉中于13501500熔融,熔体用水骤冷,形成小于2mm的玻璃质物料,经干燥磨细后成为产品。熔融烧结过程中要加助熔剂,各种含硅含镁物料如蛇纹石。白云石、橄榄石等均可作助熔剂。磷矿与助熔剂混合炉料以3/min的速度加热,在600700时,由于助熔剂脱除结晶水而吸热,1100物料开始熔化,1300完全熔融。然后以10/min的速度冷却,在1150、1050分别出现结晶过程而放热,焙体冷却后所得结晶的晶相有氟磷灰石Ca5(PO4)3F、镁橄榄石Mg2SiO4和透辉石CaMgSi2O6等。钙镁磷肥由CaO、MgO、P2O5和SiO2四个主要成分组成。其中CaO、P2O5来自磷矿,MgO、SiO2来自助熔剂。大多数磷矿中CaO/P2O5的摩尔比为3.43.8,而MgO/SiO2的摩尔比主要取决于磷矿与助熔剂中MgO与SiO2含量。磷矿与助熔剂配制成矿料,应使制得的产品中含P2O5尽可能高,而熔点最低,熔体粘度最小。40 二水物法生产磷酸应在何区域操作,为什么?P290-总结从CaSO4-P2O5-H2O三元相图上看似乎应该选择区域I,因为这个区域中二水物是稳定存在的,但实际操作中该区域温度较低,在40以下,需要移除大量反应热,很难控制,所以实际操作中二水物法要在区域II中操作,该区域中二水物是介稳的,半水物转化为二水物,而二水物转化为稳定的无水物II是很慢的。该区域磷酸浓度为W(P2O5)=20-30%,温度=60-80。41 明矾石氨浸法生产钾氮混肥时,如何采用氨碱法处理氨浸残渣?P301氨浸残渣的利用是取得经济效益的关键。 氨浸残渣的利用是取得经济效益的关键。氨碱法用高温和高浓度的烧碱溶液溶解残渣中的Al2O3 生成铝酸钠;在 低温下加入Al(OH)3晶种,铝酸钠就分解为三水软铝石Al(OH)3析出。当氨浸残渣用每升含NaOH180g/L的烧碱溶液浸取时,Al2O3和Al(OH)3 就溶解在溶液中,分离去残渣后得粗NaAlO2溶液。由于溶液中含可溶性硅酸钠,需送入脱硅槽中,加入种子生成硅渣除去。脱硅后的料浆进行液 固分离后,得铝酸钠溶液,送入分解槽,降温并通空气搅拌,使铝酸钠分解: NaAlO2+2H2OAl(OH)3+NaOH 晶浆过滤脱水,得Al(OH)3固体,除部分返回分解槽作晶种外,大部分煅烧成Al2O3 作为电解制金属铝的原料。42 何谓烃类热裂解的一次反应、二次反应?二次反应对热裂解有什么影响?P313一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。二次反应主要是指由一次反应生成的低级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。二次反应不仅降低了低级烯烃的收率,而且还会因生成的焦或碳堵塞管路及设,破坏裂解操作的正常进行,因此二次反应在烃类热裂解中应设法加以控制43 通过烃类热裂解能获得哪些产品?裂解工艺有哪几种?P320烃类热裂解是生产低级烯烃(乙烯丙烯丁二烯等)的主要方法,氧化裂化是甲烷制备乙炔的主要方法;加氢裂化是由重质油制备轻质燃料油以及煤制造人造天然气的方法;有机酸酯裂解生成酸,酮和醇,由酯类加氨裂化制备腈;有卤烷热裂解制备卤代烷烃。裂解工艺有三种,1由天然气生产烯烃,2由炼厂气生产烯烃,3由液态烃生产烯烃。44 简述SRT型裂解炉的改进情况。总结20世纪的烃类裂解的研究发现高温煅停留时间对裂解有利,反应器的设计就朝这一方向努力。60年代lummus公司把hk-40合金管双面受热,管壁温度达到1050,实现了高温煅停留时间的工艺基础;60年代中期,对于烃分压和停留时间的研究,从降低烃分压角度可以改善裂解反应的选择性而开发了SRT-II炉,该炉具有能使烃迅速升温同时降低压力的分叉变径炉管;70年代中期,lummus公司把炉管材料换为hp-40合金钢,从而进一步提高了炉管温度到1100,降低了停留时间,这就是SRT-III炉,炉内管排从4组增加到六组。80年代又开发了SRT-456型炉,辐射盘管都是多分枝变径管,其长度更小,但SRT-4是光管,而SRT-5有内翅片,增加了传热系数,降低了管壁温度,延长了清焦周期。答案二:从炉型和炉管工艺特性的变化,可以看到裂解技术的进步:1) 实现了高温、短停留时间、低烃分压的原理为了在短停留时间内使原料能迅速升到高温进行裂解反应,必须有高热强度的辐射炉管,因此采用双面辐射的单排管,能最大限度的接收辐射热量。最初使用的SRT-I型裂解炉,炉管是均径的。采用均径炉管的主要缺点:反应初期通热量小;采用均径炉管不适用于体积增大的反应(后部阻力大,烃分压大);停留时间长,有利于二次反应,乙烯收率降低;容易结焦,操作周期缩短。SRT型炉采用变径炉管,克服了上述缺点。管径排列为4-2-1-1-1-1,管径先细后粗。小管径有利于强化传热(传热面积增大),使原料迅速升温,缩短停留时间。管裂后部管径变粗,有利于减少P,降低烃分压,减少二次反应的发生,二次反应的焦量也减少,不会很块阻塞管道和炉管,因而延长操作周期,提高乙烯收率。SRT型和SRT型的管内气体温度分布及烃分压见及。显然,达到同样的出口温度时SRT型比SRT型的停留时间要短,烃分压小,因而,SRT型比SRT型得乙烯收率提高2%(质量)。SRT型吸收SRT型的经验,进一步缩短停留时间。为此,将管组后部减为2程,即4-2-1-1,这一改进的关键是开发了新的管材HP-40,炉管耐热温度更高,因而提高了炉管的表面热强度,加大了热通量,使裂解原料更进一步升温,进一步提高了乙烯收率。SRT型炉的对流段预热管布置更合理(见),充分利用了低温位的热源,用以加热原料、锅炉、高压蒸气等,使烟出口温度从SRT型的180200降到130140,加热炉的热效率提高93.5%。近年来,鲁斯公司又推出了SRT-IV、SRT-V、SRT-VI型等,其炉型结构与SRT型差异不大,但在工艺流程上采用了燃气透平,从而大大降低了能耗。45 烃类热裂解时,为什么要混入水蒸气?P3191、水蒸气可以事先预热至较高温度,用作热载体将热量传递给原料烃,避免原料在预热器中结焦;2、混入水蒸气也有助于防止碳在炉管中沉积 C H2O CO H2 3、易于从裂解气中分离 4、热惯性大,稳定裂解温度 5、最主要的是减压对裂解反应有利,但在负压操作容易吸入空气酿成事故,所以常将原料气和水蒸气混合,增加总压,降低烃分压。46 在裂解气深冷分离时,采用了哪些措施来回收冷量? P3391)急冷换热器回收的能量约占三分之一,更重要的是它能产生高温位的能量,发生高压水蒸气,可用来驱动三机(裂解气压缩机、丙烯压缩机和乙烯压缩机);2)初馏塔及其附属系统回收的是低温位的能量,主要用于换热系统;3)烟道气热量一般是在裂解炉对流室内回收利用,用来预热原料、锅炉给水、过热水蒸气加热等。 47 为何轻质原料可以用间接急冷,而重质原料必须用直接急冷?无间接急冷可以回收高品质的热量,能量利用比较合理,同时不会产生污水,但是间接急冷冷却介质不和裂解气直接接触,从而急冷速度不如直接急冷容易结焦,所以不适合用于重质原料油的急冷。48 裂解气出口急冷的目的及措施。P325不全急冷的目的:终止裂解反应,回收废热;急冷的方法:直接急冷;间接急冷。直接急冷的急冷剂用油或水。目前的裂解装置都实现采用间接急冷,以回收高品位的热能,后采用直接急冷,最后洗涤的方法。采用间接急冷的目的是回收高品位的热能,同时终止二次反应。49 裂解气中的酸性气体主要有哪些组分?若这些气体过多时,对分离过程带来什么样的危害?工业上采用什么方法来脱除酸性气体?P332-不全裂解气中的酸性气体,主要是二氧化碳(CO2)和硫化氢(H2S)。另外还有少量的有机硫化物。这些酸性气体含量过多时,对分离过程会带来如下的危害:硫化氢能腐蚀设备管道,并能使干燥用的分子筛寿命缩短,还能使加氢脱炔用的催化剂中毒;二氧化碳能在深冷的操作中结成干冰,堵塞设备和管道,影响正常生产;二氧化碳和硫化物会破坏聚合催化剂的活性;二氧化碳在循环乙烯中积累,降低乙烯的有效压力,从而影响聚合速度和聚乙烯的分子量。工业上常用化学吸收法,来洗涤裂解气,工业上已经采用的吸收剂有氢氧化钠(NaOH)溶液,乙醇胺溶液等。50 水在裂解气深冷分离中有什么危害?工业上常采用什么方法脱除裂解气中的水分?P332-不全在低温下,水能冻结成冰,并且能和轻质烃类形成固体结晶水合物。冰和水合物凝结在管壁上,轻则增大动力消耗,重则堵塞管道,影响正常生产。工业上采用吸附的方法脱水,用分子筛、活性氧化铝或者硅胶作吸附剂。51 何谓顺序分离流程?有何特点? P338顺序分离流程是按组份碳原子数顺序排列的,其顺序为:1)脱甲烷塔 2)脱乙烷塔 3)脱丙烷塔,其特点为:1)以轻油(60200的馏分)为裂解原料,常用顺序分离流程法;2)技术成熟,但流程比较长,分馏塔比较多,深冷塔(脱甲烷塔)消耗冷量比较多,压缩机循环量和流量比较大,消耗定额偏高;3)按裂解气组成和分子量的顺序分离,然后再进行同碳原子数的烃类分离;4)顺序分离流程采用后加氢脱除炔烃的方法。52 何谓前脱乙烷分离流程?有何特点?P336-不全前脱乙烷流程的排列顺序是其顺序为:1) 脱乙烷塔2) 脱甲烷塔 3)脱丙烷塔,前脱乙烷分离流程的特点:由于脱乙烷塔的操作压力比较高,这样势必造成塔底温度升高,结果可使塔底温度高达80100以上,在这样高的温度下,不饱和重质烃及丁二烯等,容易聚合结焦,这样就影响了操作的连续性。重组份含量越多,这种方法的缺点就越突出。因此前脱乙烷流程不适合于裂解重质油的裂解气分离。53 何谓前脱丙烷分离流程?有何特点? P336-不全前脱丙烷流程的排列顺序是其顺序为:1) 脱丙烷塔2) 脱甲烷塔 3)脱乙烷塔前脱丙烷分离流程的特点:C4以上馏分不进行压缩,减少了聚合现象的发生,节省了压缩功,减少了精馏塔和再沸器的结焦现象,适合于裂解重质油的裂解气分离。 54 何谓前加氢?何谓后加氢?P335加氢脱炔过程设在脱甲烷塔以前进行加氢脱炔的叫做前加氢。加氢馏分中就含有氢气,不需要外来氢气,所以前加氢又叫做自给加氢。设在脱甲烷塔以后进行加氢脱炔的叫做后加氢。被加氢的气体中已经不含有氢气组分,需要外部加入氢气。前加氢流程的优点是氢气可以自给,缺点是氢气是过量的,氢气的分压比较高,会降低加氢的选择性,增大乙烯的损失。后加氢的优点是组分少,选择性高;催化剂寿命长;产品纯度高。缺点是能量利用不如前加氢流程,流程也比前加氢流程复杂。 55 乙烯氧氯化法制氯乙烯的工艺条件是如何选择的? P358-归纳1.反应温度,是强放热反应,因此反应温度的控制十分重要。反应温度过高的缺点: 反应选择性下降:乙烯完全氧化反应加速,CO2和CO的生成量增多,副产物三氯乙烷的生成量增加;催化剂寿命缩短:催化剂的活性组份CuCl2挥发流失快,催化剂活性下降快,催化剂寿命短。适宜的反应温度与催化剂的活性有关。当采用高活性CuCl2/r-Al2O3催化剂时,适宜的反应温度为220230。2.反应压力 增高压力可以提高反应速度,但却使选择性下降。压力增高,生成1,2-二氯乙烷的选择性降低,而副产物氯乙烷的生成量增加。所以反应压力不应当过高。3. 配料比理论配料比:乙烯、氯化氢和氧摩尔比=1:2:0.5。正常操作情况下:乙烯和氧都是过量的。HCl过量的缺点:过量的HCl吸附在催化剂表面,会使催化剂颗粒膨胀,视密度减小。如果用流化床反应器,床层会急剧升高,甚至发生节涌现象。乙烯过量:采用乙烯稍微过量,能使HCl接近全部转化。但乙烯用量太多,会使烃的燃烧反应增多,尾气中CO和CO2的含量增多,使选择性下降。氧气过量:氧气稍微过量,也能提高HCl的转化率,但用量过多,也会使选择性下降。原料气的配比,必须在爆炸极限以外。4.原料气纯度原料气浓度影响:可以使用浓度比较低的原料气C2H4;惰性气体影响:原料气中CO、CO2和N2等惰性气体的存在,对反应没有影响。原料气中乙炔等含量的影响:但是原料气中的乙炔、丙烯和C4烯烃的含量必须严格控制。它们都会发生氧氯化反应,而生成四氯乙烯、三氯乙烯、1,2-二氯丙烷等多氯化物,使产品1,2-二氯乙烷的纯度降低,而影响它的后加工过程。5.停留时间要使HCl接近全部转化,必须有比较长的停留时间。但是停留时间也不能过长,停留时间过长会出现转化率反而下降的现象à副反应发生。56 简述平衡型氯乙烯流程采用氧气作氧化剂的优点。P362与空气氧氯化法(都采用固定床反应器)相比,氧气氧氯化法有如下优点: (1)多余的乙烯可以分离后回到氧氯化反应器循环使用,乙烯利用率高;(2)焚烧法处理尾气时,由于尾气数量少,不需要外加燃料;(4)原料气中不含氮气,乙烯的浓度提高,有利于提高反应速率和催化剂的处理能力,反应器体积缩小,节省设备费用;(5)氧气氧氯化法,尾气少所以不需要采用溶剂吸收、深冷等方法,回收少量1,2-二氯乙烷,因此流程比较简单,设备投资费用比较少;(6)氧气发,热点在反应器中不明显,所以产物选择性高,氯化氢转化率高。57 什么叫氧氯化反应?P349-不全氧氯化反应是指有催化剂存在下,以氯化氢和氧的混合物为氯源进行氯化的反应58 氧氯化过程中,为什么催化剂的贮存和输送设备及管路不能用铁质材料?P363由于氧氯化有水产生(乙烯深度氧化也有水产生),如反应器的一些部位保温不好,温度过低,当达到露点温度时,水就会凝结出来,溶入氯化氢气体生成盐酸,将使设备遭受严重腐蚀。因此反应器的保温相当重要。另外,若催化剂表面粘附氧化铁时,氧化铁会转化为氯化铁,它能催化乙烯的加成氯化反应,生成副产物氯乙烷(CHCl)。因此,催化剂的贮存和输送设备及管路不能用铁质材料。 59 何谓烷基化?常用的烷基化剂有哪些?P374烷基化是指利用取代反应或加成反应,在有机化合物分子中的氮,氧,碳,金属或非金属硅,硫等原子上引入烷基或芳烃基的反应,常用烯烃,卤代烷烃,卤代芳烃,硫酸烷酯和饱和醇等作为烷基化剂。60 生产烷基化汽油采用硫酸作催化剂时,硫酸的浓度为多少?为什么?P378硫酸能读一般为86-96%,硫酸浓度不能太低,以保证反应顺利进行,但硫酸浓度太高会有氧化性使烯烃氧化,同时浓硫酸中烯烃比烷烃溶解度高使烷烯比失调,副反应剧烈。61 什么是水解?什么是水合?水解系指无机或有机化合物与水作用起分解反应的过程。水中的氢原子加入一个产物中,羟基(-OH)则加入另一个产物中。水合又称水化,系指将水分子加入反应物分子内的过程。有两种加入方式。一种是反应物与一定数量的水分子化合,形成含水分子的物质;另一种是有机化合物分子中的双键或叁键在催化剂作用下加添水分子的过程.62 温度对油脂水解有何影响?P404油脂水解速度取决于温度。在低温时,油脂水解速度极慢,要用催化剂来加速水解反应,随着反应温度的升高,水解反应速度加快,在高温时(200以上),即使没有催化剂,水解速度也是很快的。高温不仅使反应物碰撞机会增多,反应速度加快,而且能促进水的离解,生成更多的氢离子和氢氧根离子,成为油脂水解的催化剂。高温增大了水在油中的溶解度(32时棉籽油在水中溶解度为0.14%,180时为3%,230时为8%,250时为20%),增大了油脂与水的接触面积。因此,适宜的水解温度不仅能增加水解速度,而且不需添加水解催化剂。但水解温度不能过高,例如不能超过260,因这时除主反应外,还会发生油脂或甘油的裂解、聚合等副反应,使脂肪酸得率下降,产品色泽加深,气味加重。63 气相乙烯水合法生产乙醇时,为什么乙烯转化率仅为5%左右?P409理论上低温、高压有利于平衡向生成乙醇的方向移动,但由相图可知,即使压力升至14.7MPa,在300时乙烯的平衡转化率也只有22%左右,而此时已发生猛烈的乙烯聚合反应。目前工业上应用的催化剂(如磷酸/硅藻土)只能在250300时才能发挥正常活性,为防止乙烯聚合,工业上采用的压力在7.0MPa左右,相应的平衡转化率在10%20%,考虑到动力学因素,实际的转化率仅5左右。64 简述如何选择环氧乙烷水合工艺条件。P422(1)原料配比 生产实践证明,无论是酸催化液相水合或非催化加压水合,只要水与环氧乙烷的摩尔比相同,乙二醇收率相当接近。乙二醇的选择性随原料中水与环氧乙烷摩尔比的提高而提高的。但摩尔比不能无限止提高。因在同等生产能力下,设备容积要增大,设备投资要增加,在乙二醇提浓时,消耗的蒸气会增加,即工厂能耗上升。另外还须考虑副产物问题。因为二甘醇、三甘醇等也是有用化工产品,售价比乙二醇还高,适当多产二甘醇等副产品可提高工厂经济效益。根据以上二点理由,工厂将水与环氧乙烷的摩尔比定在1020范围内。(2)水合温度 在非催化加压水合的情况下,由于反应活化能较大,为加快反应速度,必须适当提高反应温度。但反应温度提高后,为保持反应体系为液相,相应的反应压力也要提高,为此对设备结构和材质会提出更高的要求,能耗亦会增加,工业生产中,通常为150220。(3)水合压力 在无催化剂时,由于水合反应温度较高,为保持液相反应,必须进行加压操作,在工业生产中,当水合温度为150220时,水合压力相应为1.02.5MPa。(4)水合时间 环氧乙烷水合是不可逆的放热反应,在一般工业生产条件下,环氧乙烷的转化率可接近100%,为保证达到此转化率,需要保证相应的水合时间。但反应时间太长,一方面无此必要,另一方面由于停留时间过长会降低设备的生产能力。65 影响n(正丁醛)/n(异丁醛)的因素有哪些?这些因素是如何作用的?P433-总结影响烯烃氢甲酰化反应的因素主要有三个: (1)温度;(2)CO分压、H2分压和总压;(3)溶剂,(4)催化剂 以下分别讨论影响因素。 1.温度的影响 反应温度对反应速度、产物醛的正/异比率和副产物的生成量都有影响。 温度升高,反应速度加快,但正/异醛的比率降低,重组份和醇的生成量增加,氢甲酰化反应温度不宜过高,使用羰基钴催化剂时,一般控制反应温度为140180,使用膦羰基铑催化剂时,控制反应温度为100110。并要求反应器有良好的传热条件。2. CO分压、H2分压和总压的影响 从烯烃氢甲酰化的动力学方程和反应机理可以知道,增加CO分压,会使反应速度减慢,但CO分压太低,对反应也不利。以羰基钴为催化剂时,在总压一定时,随着CO分压的增加,正/异比率增高。因此,以羰基钴为催化剂时,应当采用比较高的CO分压。 以膦羰基铑为催化剂时,在总压一定时,随着CO分压的增加,正/异比率降低。因此,以膦羰基铑为催化剂时,应当采用比较低的CO分压。但是CO分压太低,原料丙烯加氢生成丙烷的量就增加,原料烯烃损失量就大,所以CO的分压有一个最适宜的范围。氢分压增高,氢甲酰化反应速度加快,烯烃转化率提高,正/异醛比率也相应升高。提高氢分压,可以提高钴和铑催化剂的活性和正/异醛比率,但同时也增加了醛加氢生成醇和烯烃加氢生成烷烃的速度,这就降低了醛的收率,增加了烯烃的消耗,所以在实际使用时,要做全面的权衡,选用最适宜的氢分压。一般H2/CO摩尔比为1:1左右。3.溶剂的影响 氢甲酰化反应常常要用溶剂,溶剂的主要作用是: (1)溶解催化剂; (2)当原料是气态烃时,使用溶剂能使反应在液相中进行,对气-液间传质有利;