《三角形的内角和定理第1课时》公开课教学设计【北师大版八年级数学上册】(共9页).docx
-
资源ID:14014017
资源大小:100.17KB
全文页数:9页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《三角形的内角和定理第1课时》公开课教学设计【北师大版八年级数学上册】(共9页).docx
精选优质文档-倾情为你奉上第七章 平行线的证明7. 5 三角形的内角和定理第 1 课时 教学设计 教材分析本节是北师大版教材八年级上册第七章平行线的证明第五节的内容.通过上一节课的学习,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力.本节课旨在利用平行线的相关知识来证明三角形的内角和定理以及灵活运用这个定理解决相关问题,使学生突破原有的形象思维限制,引入几何证明中的重要方法添加辅助线法,从而为下一节三角形外角的学习作好铺垫,同时也为以后继续学习几何证明打下良好的基础.因此,本节课的内容在教材编排上起着承上启下的重要作用. 教学目标1. 掌握三角形内角和定理的证明,灵活运用三角形内角和定理解决相关问题.2. 经历探索与证明的过程,培养学生探索、归纳的能力,一题多解的能力、转化知识并解决问题的能力,发展学生的推理能力.3. 初步体会思维的多向性,引导学生个性发展,使学生体验到解决问题的成就感,体会“合作双赢”的理念. 教学重难点【教学重点】探索三角形内角和定理的证明过程及其简单的应用.【教学难点】在三角形内角和定理的证明过程中正确添加辅助线. 课前准备 教师准备课件,学生准备三角形纸片. 教学过程一、创设情境,引入新知开场白:同学们,今天我们来学习三角形的内角和定理.或许有同学会说:“老师,老掉牙了,地球人都知道!”没错,今天的内容确实很简单.但如果大家能在特别简单的知识中挖掘出更有价值的知识,那么你们将是最棒的!下面我们一起来进入今天的学习中来.活动内容:1. 旧知回顾、引入新课:问题1:你知道三角形的三个内角之间存在怎样的关系吗?(由于学生在以前学过这个知识点,所以很轻松地就可以答出.)问题2:你还记得这个结论的探索过程吗?设计意图:爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过提出问题,激发学生的学习热情.教学效果:学生能够很快进入学习状态,从心理上感知这节课的内容很简单,排除学生对几何证明的胆怯情绪.2 动手操作、初步感知:(让学生分小组讨论:有什么办法可以验证得出这样的结论.学生会提出度量、撕拼或折叠的方法,然后让每个学生用准备好的三角形卡片将它的内角撕下,试着拼折看.通过小组合作交流最后师生共同归纳总结拼图方法.)实验1:将纸片三角形三顶角剪下,随意将它们拼凑在一起.(指名同学上台展演,其他同学互相展示;对于不同拼法要给于鼓励和肯定.等撕拼展示的同学完成后,还可让其他同学对照模型图抽象出几何图形,培养学生的理性思维意识和细心观察、善于发现问题之关键的能力.)撕拼验证三角形的内角和为180°的基本方法如下所示:由以上拼法可以让学生抽象出三种几何图形,使学生由形象思维过渡到理性思维(实际上是三种证法),为第二环节定理的证明做好充分准备: 实验2:将三角形的三个角折拼成一个平角.(小组交流后再展示,指定一位同学带领大家一块儿完成折叠过程.老师故意折错,使三个顶点不重合在一起,旨在让学生理解折叠的实质在于折痕与底边是平行的,进而为添加辅助线作平行线埋下伏笔.)具体方法:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图638(1)然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3),最后得图(4)所示的结果.(试用自己的语言说明这一结论的证明思路)(1) (2) (3) (4)设计意图:对比度量、撕纸、拼折等探索过程,让学生体会思维实验和符号化的理性作用.将自己的操作转化为符号语言对于学生来说还存在一定困难.但撕拼图和折拼示意图中的平行线为学生搭建了一个台阶,使学生想到把平行线的判定定理逆变成性质定理作平行线构造同位角、内错角、同旁内角或平角来证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用度量、撕纸、折叠的方法可以验证三角形内角和定理的原因构造一个平角,为后面添加辅助线证明定理做好铺垫.活动内容:教是为学服务的,教的最终目的是为了不教,教给学生学习方法比单纯教给学生证明更有效.教师设问:从刚才的活动过程中,你能说出证明:“三角形内角和等于180°”这个结论的正确方法吗?(1)把你的想法与同伴交流.(2)各小组派代表展示说理方法.(3)请同学们让小明的想法变成现实.探究:刚才的撕纸、折纸都是把三角形的三个内角移到一起,如果不实际移动A和B,你有什么方法可达到同样的效果?根据前面的公理和定理,你能用自己的语言比较简捷的写出这一证明过程吗?与同伴交流,比比哪一个小组的方法好? 已知:ABC 求证:A+B+C=180°(在证明中,当原来的条件不够时,可添加辅助线,从而构造新图形,形成新关系,找到已知与未知桥梁,把问题转化成自己已经会解的情况,这是解决问题常用的方法之一,辅助线通常画成虚线.)方法总结:方法1:(作平行线,构造内错角、平角)过A点作DEBCDEBCDAB=B,EAC=C(两直线平行,内错角相等)DAB+BAC+EAC=180°BAC+B+C=180°(等量代换)方法2:(作平行线,构造内错角、同位角、平角)作BC的延长线CD,过点C作射线CEBACEBAB=ECD(两直线平行,同位角相等)A=ACE(两直线平行,内错角相等)BCA+ACE+ECD=180°A+B+ACB=180°(等量代换)3 课本“想一想”中小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?添加辅助线思路:构造平角或平行线 (学生讲解或老师讲解,了解即可)方法3:(作平行线,构造内错角、同旁内角)过点A作ADBC(如图)ADBC,1=C,DAB+ABC=180°BAC+B+C=DAB+ABC=180°方法4:(作平行线,构造同位角、内错角、平角)如图,在BC边上任取一点D,过D作DEAB交AC于E,作DFAC交AB于FDEAB1=B,2=4DFAC3=C,A=42=A又1+2+3=180°A+B+C=180°方法5:(作平行线,构造内错角、同旁内角)如图,过点A任作一条射线AD,再作BEAD,CFADBEADCF,1=3,2=4,EBC+BCF=180°BAC+ABC+ACB=EBC+BCF=180°设计意图:通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益;有意识地培养学生的说理能力、逻辑推理能力、语言表达能力以及一题多思、一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透初中阶段一个重要数学思想转化思想,为学好初中数学打下坚实的基础.教学效果:添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.三、运用新知活动内容:例题1:如图,在ABC中,B=38°,C=62°,AD是ABC的角平分线,求ADB的度数?分析:要求ADB的度数,根据三角形内角和定理可知道B和BAD的度数,BAD的度数可以由BAC的度数得到,而BAC又可以由ABC的内角和来得到.设计意图:通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段另一数学思想数形结合思想,灵活运用三角形内角和定理来解决问题,达到活用知识的目的.教学效果:学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题,但书写过程可能会不尽人意.四、巩固新知活动内容:1 .ABC中,C=90°,A=30°,B=?2. A=50°,B=C,则ABC中B=?3. 三角形的三个内角中,只能有_个直角或_个钝角.4. 任何一个三角形中,至少有_个锐角;至多有_个锐角.5. 三角形中三角之比为123,则三个角各为多少度?6. 已知:ABC中,C=B=2A. (a) 求B的度数; (b) 若BD是AC边上的高,求DBC的度数?设计意图:通过习题,巩固三角形内角和知识,培养学生思维的广阔性;通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,以及知道角度之比求角的度和需要学生数形结合解决第(6)小题等,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享学友的想法,培养学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延.教师能全面了解学生对三角形内角和定理内容是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.教学效果:学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题,可能会在书写过程方面需要老师指导或提醒.五、归纳小结采用先让学生归纳补充,然后教师再补充的方式进行:这节课我们学了哪些知识?你有什么收获?1. 证明三角形内角和定理有哪几种方法?(度量、撕拼、折叠、证明)2. 辅助线的作法技巧:添加辅助线的实质是通过平行线来移动角构造平行线间的内错角、同位角、同旁内角,构造平角.3. 三角形内角和定理的简单应用. 教学反思略.专心-专注-专业