智能饮水机控制系统(共19页).doc
精选优质文档-倾情为你奉上1前 言随着电子技术的发展,各种电子设计产品逐步渗透到生活的各个角落。21世纪,微电子将有更为迅猛的发展,微电子产品在国民经济发展中占有越来越重要的地位。可以想象,当今世界,脱离了电子产品将是一个黑暗与枯燥的世界。运用电子设计理论,充分结合生活实际,我们设计了该智能饮水机控制系统。饮水机存在于现代每个家庭生活中,但是目前大部分的饮水机功能仅限于烧水功能,对现代人来说,功能还是不完善或者说存在一定的缺陷,比如对水温没有显示装置,对加热次数没有合理控制等,这些都与对健康水质的追求相矛盾。为了解决以上问题,我们结合所学电子设计理论知识,设计了本套智能饮水机控制系统。该系统结合了电子线路设计、数字电子技术、Protel仿真设计软件等相关知识,考虑现实需要来完成的。主要实现的功能为对饮水机加热后的水温测量及其3位半的数字显示和对饮用水加热次数进行自动控制的功能。功能一可以通过热敏电阻,经过一些电路变换(电桥电路),感应出特定电压信号,经过A/D转换电路变成相应的温度,直接3位半显示器来实现显示;也可以通过集成温度传感器比如AD590,将感应电流接入特定的A/D转换电路,最后译码实现温度数显功能。功能二的实现为利用饮水机加热信号灯会的亮灭状态,我们想利用这个特点和一个光敏器件结合,这样就可以产生脉冲信号,输入到计数器,根据设定的数值,让相应的计数器管脚作为输出, 再利用输出的这个脉冲切断主电路(用到特定的继电器);也可以利用饮水机内部加热电路的断开状态来通过脉冲感应出加热次数,再利用脉冲实现控制。本设计综合功能一和功能二,采用AD590及光敏器件的设计方案实现电路。经测试仿真,该套设计系统整体性能良好,基本实现各功能,使得普通饮水机更加智能化、更加人性化,但也存在一定控制灵敏度和抗干扰缺陷。可以预见,智能饮水机将来的发展前景很宽广,可以添加些更多的新功能,新技术,比如可以加入无线和网络控制装置,实现各家电的联网控制等。相信,在现代电子设计技术日新月异的发展下,智能饮水机将会是更全面的、更丰富的控制系统。2总体设计方案2.1设计方案一 A/D转换器MC14433电路2.1.1方案一方框图 译码器CC4511温度传感器AD5903位半LED显示MC1413选通电路K继电器控制电路脉冲传达及控制电路计数器74LS161光敏三极管加热电路图2.1.1方案一方框图2.1.2 方案论证 该方案的设计流程方框图如上所示,分两块功能电路。功能一电路采用AD590作为温度检测电路来检测温度,将传感器的电流信号(需转换成电压信号)输入到AD转换器中,经译码电路和选通电路最终实现3位半LED的数显;功能二电路采用光感应器件(光敏三极管),将感应脉冲送至74LS160计数器,计数器设定了一定的计数次数,当达到此次数时,发出一脉冲送至相应控制电路中,进而控制继电器工作,实现切断加热电路。本方案运用温度传感器AD590和光感应器光敏三极管件作为检测感应器件,其中AD590的输出是电流,在输入到AD转换器中需要先转换成电压信号。该方案整体上易于实现,采用了很多集成器件,使得整体电路结构完整、清晰,各功能结构简单。2.2设计方案二2.2.1方案二方框图整形放大电路热敏电阻8051相关接口电路A/D转换电路电桥定值电阻3位半数字显示电路K继电器控制电路脉冲传达及控制电路内部加热电路感应脉冲计数器74LS161加热电路图2.2.1方案二方框图2.2.2方案论证该方案的设计电路流程图如上面所示,对比方案一,该方案设计检测电路由光敏电阻组成的电桥电路和感应脉冲电路组成,实现原理也较为简单,结构简洁,但功能一电路误差较大,增加整形放大电路的情况下,扩大了误差范围,同时也不适用饮水机环境;功能二区别一方案一在于检测电路采用了饮水机内部加热电路的开关状态原理,感应出电路脉冲,从而实现对加热次数的显示与控制。2.3 方案比较与选择两种方案比较,在功能一方面,方案一运用了AD590温度传感器作为检测电路器件,方案二运用热敏电阻构成的电桥电路作为检测电路,虽然两种方案均能实现温度的数显和控制,但方案二电路检测误差较大,且一定程度上不适用于饮水机系统中。而方案一采用AD590的集成温度传感器作为热检测电路,这种检测方法灵敏度高,线性度好,适用测温范围较饮水机系统合适。功能二方面,方案一采用光感应器件光敏三极管作为脉冲计数来源,且存在一定的误差,方案二采用内部加热电路的开关状态作为脉冲来源,稳定性较好,不易受外界影响,但是实现不方便。方案二的设计模块中检测电路、AD转换电路、控制显示电路,主要是检测电路对整个功能实现影响较大,且A/D转换电路需要放大电路的作用,导致整体误差的扩大,而控制显示电路采用了单片机设计,不容易实现微型化。最后对两种方案进行protel99se软件的仿真测试,通过验证比较,方案一电路稳定,显示准确,决定选取方案一作为最终的设计方案。3单元模块设计3.1直流稳压源电路该直流稳压源电路实现是+5V的电压输出,原理图如下所示:图3.1 直流稳压源电路图在连接电路中,需要在变压器的副边接入保险丝FU,以防电路短路损坏变压器或其它器件,其额定电流要略大于Iomax,选FU的熔断电流为1A。整个电源电路结构形式为220V电压经过变压器输入桥式整流电路中,而后经几个极性电容滤波接入到可调式三端稳压器CW317输入端,稳压器内部含有过流、过热保护电路。R1和RP1组成电压输出调节电路,输出电压Vo1.25(1+RP1/R1) (3.1) 由于设计要求+5V,根据上面公式计算参数得到:RP1/R1=3,取R1=240,RP1为4.7K的滑动变阻器。电容C2与RP1并联组成滤波电路,以减少输出的纹波电压,二极管VD的作用是防止输出端与地短路,损坏稳压器,起到保护稳压管的作用。相关主要元器件选择及数量下表3.1 表3.1编号名称规格数量CW317可调式稳压器1.2V37V/1.5AFU保险丝1A(Iomax)1C1、C2极性电容2200Uf/25V2D5二极管IN414813.2温度检测电路在饮水机系统温度检测电路中,运用AD590温度传感器构成TV变换电路,如下图3.2所示:图3.2 温度检测电路图如图所示,电位器R2用于调整零点,R4用于调整运放LF355的增益。调整方法如下:在0时调整R2,使输出VO=0,然后在100时调整R4使VO=100mV。如此反复调整多次,直至0时,VO=0mV,100时VO=100mV为止。最后在饮水机水温下进行校验,例如,若水温为25,那么VO应为25mV。冰水混合物是0环境,沸水为100环境。要使电路中的输出为200mV/,可通过增大反馈电阻(图中反馈电阻由R3与电位器R4串联而成)来实现。MC1403是高精度集成稳压器,可以提供输出可调的基准电压。 本模块电路中用到的是电流型AD590,采用集成运算放大器LF355构成的电路实现电压的输出,同时增加了电路的精度和可靠性。温度检测电路中用到的主要电子器件和数量如表3.2附表3.2编号名称规格数量AD590温度传感器-551501LF355运算放大器K(200V/Mv)1R2、R4滑动变阻器2K、100K2MC1403基准电压源-30.5-17.5V13.3 A/D转换及显示电路采用MC14433、CD4511、MC1413等集成器件,电路连接图如图3.3所示:图3.3 A/D转换及显示电路图如图3.3所示的电路为3位半温度显示电路,其中,MC14433为集成电路驱动器,它含有7个反向驱动单元,各单元采用达林顿晶体管电路。因为MC14433的DS1DS4为高电平有效,经MC1413反相后,正好与4只共阴极LED的千位、百位、十位及个位的阴极有效相连。当MC14433在每次A/D转换结束时,EOC端输出一个脉宽为Tcp/2的正脉冲,该正脉冲过后,就在DS1DS4端依次输出脉宽为18Tcp的位选通正脉冲,其中,Tcp为时钟脉冲周期。当DS1输出正脉冲时,Q3、Q2和Q0输出的最高位数据0或1用来表示超量程、欠量程和极性标志等等。当Q3=1时,最高位显示0表示欠量程,Q3=0时最高位显示1表示超量程;Q2表示被测电压极性,即Q2=1极性为正,Q2=0极性为负,这时+5V电压通过电阻Rm使“-”号点亮;Q0表示量程,即Q0=说明输入电压在正常范围内,Q0=1表示在正常范围之外。Rm和Rh分别是负极性和小数点显示的限流电阻。在DS1输出位选通正脉冲后,DS2、DS3和DS4输出的正脉冲使Q3Q0端输出相应的BCD码数据。CD4511为7段译码驱动器,当输入电压过载时,OR=1,控制CC4511的灭灯端BI,使显示灯熄灭。MC14433提供输出可调的基准电压Vref,当基准电压为2V或200mV时,满量程分别为1.999V或199.9mV。优点为具有自动校零和自动量程转换功能。MC14433的时钟频率fcp与CP0、CP1两端所接电阻Rc值有关。当Rc=470K时,fcp=66KHz;当Rc=750K时,fcp=50KHz,每个A/D转换周期约需16400个时钟脉冲,若时钟频率fcp=66KHz是,由式T=N/fcp=4N/fosc可得一次A/D转换所需时间为T=0.25s,则测量速度为4次/s。积分元件R1C1的取值可由下式估算:R1C1=Vimax.T1/Vc1 (3.3)式中,Vc1=VDD-Vimax-0.5V,T1=4000/fcp,4000为信号积分阶段所需时钟脉冲数。电路中用到的相关主要电子器件表3.3附表3.3编号名称规格数量MC14433双积分型A/D转换器8mW1LED共阴极数码管-4CD45117段译码驱动器318V13.4 光敏检测及计数电路3.4.1光敏三极管感应电路 为显示饮水机加热次数,需要检测加热电路开关状态次数,运用光敏三极管作为感应器件,将感应到的脉冲送到后续电路中,从而实现加热次数的显示,光敏感应电路如下所示: 图3.4.1 光敏三极管感应电路3.4.2 计数及继电器控制电路该电路为功能二实现的核心电路,运用74LS161及继电器等主要器件,电路图如下所示:图3.4.2计数及继电器控制电路 图3.4.2为计数及继电器控制电路,它由74LS161及继电器、二极管等组成。可以这样测试电路效果,当接通电源时,用手挡住VT2 光敏三极管的光线,其内阻增大,使VT3集电极为高电位。这样使VT4,VT5复合管饱和导通,VD2发光二极管发光变亮,同时电流流过继电器线圈,产生磁场,开关触点吸合接通到另一边,切断了220VD电压的供应;反之,若不用手挡住VT2,光敏三极管内阻较小,VT3基极为高电位,使VT3导通,其集电极为低电位,这样VT4、VT5复合管截止,发光二极管VD2不亮,继电器线圈中也没有电流通过,继电器不工作,开关触点继续保持220V接头上电路中VD1为继电器的保护二极管。当VT4、VT5复合管从导通突然转变为截止时,继电器线圈中会产生一个较大的反电动势,反电动势产生的脉动电流,给VD1放电,使继电器线圈不受损坏,从而达到保护继电器的作用。外接晶体采用12.000MHz和两个30pH的电容组成,电容C3和C4构成并联谐振电路,接在放大器的反馈回路中。 4特殊器件介绍4.1 双积分型A/D转换器MC14433MC14433是单片集成3位半A/D转换器,其内部结构如图4.1.1所示: 图4.1.1 MC14433原理框图MC14433属于双积分型A/D转换器,其中集成了双积分式A/D转换器所有的CMOS模拟电路和数字电路。具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容件即可构成一个完整的A/D转换器。MC14433采用字位动态扫描BCD码输出方式,即千、百、十、个位BCD码分时在Q0Q3轮流输出,同时在DS1DS4端输出同步字位选通脉冲,很方便实现LED的动态显示,且易于实现自动控制。MC14433只有24个引脚,引脚排列如图4.1.2其中VDD和VEE分别接+5V和5V,它的主要引脚功能见附表4.1.1: 附表4.1.1端名功 能Pin1(VAG)模拟地,为高阻输入端,被测电压和基准电压的接入地Pin2(VR)基准电压,此引脚为外接基准电压的输入端Pin3(Vx)被测电压的输入端Pin4-Pin6(R1/C1,C1)外接积分元件端Pin7、Pin8(C01、C02)外接失调补偿电容端Pin9(DU)更新显示控制端Pin10、Pin11(CLK1、CLK0)时钟外接元件端Pin12(VEE)负电源端Pin13(Vss)数字电路的负电源引脚Pin14(EOC)转换周期结束标志位Pin15( OR)过量程标志位,当|Vx|>VREF时,OR输出为低电平Pin16、17、18、19(DS4、DS3、DS2、DS1)多路选通脉冲输出端Pin20、21、22、23(Q0、Q1、Q2、Q3)BCD码数据输出端附图4.1.2MC14433在DS1输出位选通正脉冲后,DS2、DS3和DS4输出的正脉冲使Q3Q0端输出相应的BCD码数据。DS1DS4分别表示千、百、十、个位选通角,附表4.1.3即为MC14433千位BCD码标志意义,如表所示:附表4.1.3MC14433千位BCD码标志意义MSD编码内容Q3Q2Q1Q0BCD7段数码显示+01 1 1 0不显示-01 0 1 0+0 UR1 1 1 1-0 UR1 0 1 1+11 1 0 04-1 (仅显示"b"和"c"段)-10 0 0 00-1 (仅显示"b"和"c"段)+1 OR0 1 1 17-1 (仅显示"b"和"c"段)-1 OR0 0 1 13-1 (仅显示"b"和"c"段)4.2 温度传感器AD590AD590为一种集成温度传感器,是一种半导体的单片集成两端感温电流源,它是利用晶体管的b-e结压降的不饱和值VBE与热力学温度T和通过发射极电流I的下述关系 Vbe= K IT*lnI/ q (3.3)来实现对温度的检测。式中,K波尔兹常数;q电子电荷绝对值。集成温度传感器具有线性好、精度适中、灵敏度高、体积小、使用方便等优点,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般为10mV/K,温度0时输出为0,温度25时输出2.982V。电流输出型的灵敏度一般为1mA/K,本设计采用电流型。在被测温度一定时,AD590相当于一个恒流源,把它和530V的直流电源相连,并在输出端串接一个1k的恒值电阻,那么,此电阻上流过的电流将和被测温度成正比,此时电阻两端将会有1mVK的电压信号。其基本电路如图4.2.1所示。图4.2.1 AD590基本电路原理框图图4.2.1是利用Ube特性的集成PN结传感器的感温部分核心电路。其中T1、T2起恒流作用,可用于使左右两支路的集电极电流I1和I2相等;T3、T4是感温用的晶体管,两个管的材质和工艺完全相同,但T3实质上是由n个晶体管并联而成,因而其结面积是T4的n倍。T3和T4的发射结电压UBE3和UBE4经反极性串联后加在电阻R上,所以R上端电压为UBE。因此,电流I1为: I1UBER(KTq)(lnn)R (3.4)对于AD590,n8,这样,电路的总电流将与热力学温度T成正比,将此电流引至负载电阻RL上便可得到与T成正比的输出电压。由于利用了恒流特性,所以输出信号不受电源电压和导线电阻的影响。图4.2.1中的电阻R是在硅板上形成的薄膜电阻,该电阻修正了其电阻值,因而在基准温度下可得到1AK的I值。4.3 电磁继电器继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。继电器电路如图4.3.1所示:图4.3.1 继电器电路本设计方案采用电磁式继电器,该继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 4.4 计数器74LS16174161是4位二进制同步加计数器。图4.4.1为74LS161引脚图,如下所示:图中RD是异步清零端,LD是预置数控制端,A、B、C、D是预置数据输入端,EP和ET是计数使能端即控制端,ROC是进位输出端,它的设置为多片集成计数器的级联提供了方便。附表4.4.2为74161的功能表。在本设计方案中,74161作为计数器,对光敏检测电路传来的脉冲信号计数,由于才有4位二进制的计数器,当脉冲数达到16时,74161 TC端输出一进位信号,即为一个上升沿脉冲,作为后续继电器电路的控制信号。图4.4.1 74LS161引脚图附表4.4.2清零RD预置LD使能EP ET时钟CP预置数据输入A B C D输出QA QB QC QDL×× ××× × × ×L L L LHL× ×A B C DA B C DHHL ××× × × ×保持HH× L×× × × ×保持HHH H× × × ×计数5系统调试本课程设计是紧贴实际的理论运用设计。系统调试作为其中最为重要的一环,是检测设计是否达到设计要求的重要依据。本设计调试主要是仿真电路和实物电路的理论的调试,即Protel99软件对电路的测试。 功能一温度数显电路调试,电路图参考总图附录。接通电源,VDD=+5V,VEE=-5V,Vss接地,测量零电压,使输入电压Vi与VAG短接,3位半数显LED电路应为0000;接着测量基准电压,调整电位器RP使VREF的电压为VREF=1.999V。用示波器观测MC14433CP0脚的时钟脉冲的波形,并根据频率计算出测量的速度。对于稳压源的输入,Vi=1.990V,电压表应显示1.990V,并用示波器观察C1脚波形。交换输入电压Vi的极性,重复上面步骤,电压表显示负压1.990V。最后,用示波器观测MC14433的位选通信号DS1DS4的波形,再观测到EOC端的正脉冲。依照上面测试步骤,知道电路中存在电阻不够匹配,出现不能正确显示。功能二继电器控制电路按照理论计算出各电阻、运算放大器等参数,基本达到设计要求。只要按照设计电路的正确接法,均可以实现数字显示和继电器控制的功能,当然模拟转换的精度和误差再所难免,然而通过软件的调试可以达到最佳的稳定状态,更好地实现电路功能。调试中注意到,设计电路与饮水机内部加热电路的电气性能匹配问题很重要,还有就是74161的进位信号为上升沿脉冲,而后续设计的控制电路在上升沿脉冲时继电器不工作,故需要在EOC输出端加反相器,从而实现脉冲控制的加热电路切断。6系统功能、指标参数该设计系统主要实现两种功能即饮水机水温的数字显示和加热次的计数控制功能。两种功能整体结构完整,简洁,但电路中各参数匹配要求较高。在指标参数方面,经R1C1=Vimax.T1/Vc1、Vbe= K IT*lnI/ q等公式计算,算出了各电路器件的参数值;再经过系统调试和测试,得到各模块电路的指标参数:直流稳压源电路将220V交流电压输入下,能够得到满足要求的+5V输出电压;转换电路中,对Vi输入某一模拟电压例如2.0V,可以看到超量程端显示,输入0.8VD电压时,能够得到3位半LED显示器上0.799V电压显示,基本实现了显示测量功能, 我们还是通过理论上的计算即公式V0=1.25(1+RP/R1)计算出输出电压+5V时需要的电阻参数。通过多次测量区平均值的方法,我们可以得到了设备的精度参数。在加热次数控制电路模块中,通过理论上的计算得到AD590分压电阻1K。这个设计中需要计算的量不是很多,MC14433、CD4511、MC1413及相关接口电路中参数的选择在前面已经提到过,此外,在数字电压显示部分,我们仿照了参考书中相应模块,借鉴了相应的书籍资料数据,进行测试和调节,看所测的参数稳定,基本稳定满足设计要求。 7总结与体会通过这次课程设计的学习,收获很多,不仅提高了自己在数字集成电路应用方面的实践技能,也树立了严谨的科学作风,更培养自己综合运用理论知识解决实际问题的能力,这是一次深刻的自我实践课程的练习,在电路设计、安装、调试、整理资料等环节中,我们都碰到了很多的问题,在这一过程中我们通过不断的学习、查资料、请教老师同学等方式逐步又解决了问题,同时,在这一提出问题、解决问题的过程中,懂得了如何去学习去运用。我的这次课程设计是第一次将理论知识运用到具体实践的学习,感触很深,在开始的时候往往没有头绪,不知如何下手,通过老实得值、同学的帮助,进步很大,主要有如下几方面的提高:首先,初步掌握了数字逻辑电路分析和设计的基本方法,根据设计任务和指标,初选电路,通过调查研究,设计计算,确定电路方案;选测元器件,连接仿真电路,独立进行测试,并通过调试改进方案,分析实验结果,写出设计总结报告;其次培养了一定的自学能力和独立分析问题、解决问题的能力,在这次的电路测试中,排除一些设计故障往往牵涉到很多问题,故具有扎实的基础理论知识是设计的根本和前提,从而加深了学习理论知识的重要性,但仅有理论知识是不够的,还要有较强的变通能力,懂得真正的运用。最重要的是加深了协作与相互学习的团队精神的认识,从与同学的交流也更加巩固了所学知识,领悟的更加深刻,在这里最重要的是信息的共享很珍贵,之间的设计方案与想法,往往也是思路的源泉,故而加强协作与沟通是这次设计取得成功的所在。在总结这次设计的最后体会是,实践是检验理论的最好方法,而理论是指导实践的根本依据,所以的理论知识就显得尤为重要,而且在学习知识当中,善于串联知识点,而不要孤立的学习,这样才对所学知识理解和掌握得更全面、更扎实。8谢辞在这次设计中,得到了很多人的帮助,不管是小小的一个提醒,还是一份热情耐心的讲解,都是莫大的支持和帮助,在此设计即将完成之际,向给予我帮助的老师、同学、朋友致以我最真挚的谢意。在本设计初期,古老师的悉心指导下,我们懂得了课程设计学到的是什么,懂得了课程设计的思想和实际步骤,学会了如何解开思路,如何开辟设计途径;而在后期设计中,问题接踵而至,也是古老师给我们启发和讲解突破点,分析问题的所在,一步一步的指引下终于问题得到圆满的解决。其次要感谢的是一起设计的同学,是相互的默默支持,频繁而又积极的学习交流,才能取得如今的成功。记得那天讨论的情景,大家相互述说自己通过互联网、图书馆、其他同学老师身上获得的信息与知识,在设计电路中,大家也是积极阐述自己的见解,取得了每支电路的多种方案设计,当然在这其中,也遇到了很多困难,但小组都没有气馁,而是相互鼓励、相互打气,终克服困难取得了本次设计的成功。最后,再次感谢参与和帮助设计的老师、同学和朋友。9参考文献1谢自美电子线路设计·实验·测试(第二版)M华中科技大学出版社,20022欧大生,杨杉电路设计与制板Protel DXP实用教程M西安电子科技大学出版社,20043沙占友.智能传感器系统的设计 M.电子工业出版社.2004.064张庆双电源应用电路集萃M机械工业出版社,20055康华光,陈大钦电子技术基础(第四版)M高等教育出版社,19996常健生.检测与转换技术M.机械工业出版社.2003.017陈德福,林君智能仪器M .机械工业出版社.2005.02专心-专注-专业