欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    经典机器学习算法优缺点比较(共2页).docx

    • 资源ID:14059557       资源大小:16.42KB        全文页数:2页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    经典机器学习算法优缺点比较(共2页).docx

    精选优质文档-倾情为你奉上经典机器学习算法优缺点比较算法优点缺点决策树计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;容易过拟合(后续出现了随机森林,减小了过拟合现象);朴素贝叶斯对小规模的数据表现很好,适合多分类任务,适合增量式训练。对输入数据的表达形式很敏感。对关联性强的特征表现不好Logistic回归:实现简单;分类时计算量非常小,速度很快,存储资源低;容易欠拟合,一般准确度不太高;只能处理两分类问题,且必须线性可分;KNN可用于非线性分类;训练时间小;准确度高,对数据没有假设,对outlier不敏感;计算量大;样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);需要大量的内存;SvmLibsvm/liblinear低泛化误差;容易解释;计算复杂度较低;对参数和核函数的选择比较敏感;原始的SVM只比较擅长处理二分类boosting低泛化误差;容易实现,分类准确率较高,没有太多参数可以调;对outlier比较敏感;GDBT(MART)迭代决策树GBDT几乎可用于所有回归问题(线性/非线性);亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例);可以解决过拟合问题;专心-专注-专业

    注意事项

    本文(经典机器学习算法优缺点比较(共2页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开