一次函数、反比例函数、二次函数地综合题(共10页).doc
-
资源ID:14060093
资源大小:1.12MB
全文页数:10页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
一次函数、反比例函数、二次函数地综合题(共10页).doc
精选优质文档-倾情为你奉上一次函数、反比例函数、二次函数的综合题1抛物线与x轴分别交于A、B两点,则AB的长为_ABCD(第3题)菜园墙2已知函数:(1)图象不经过第二象限;(2)图象经过(2,-5),请你写出一个同时满足(1)和(2)的函数_3如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园,设边长为米,则菜园的面积(单位:米)与(单位:米)的函数关系式为 (不要求写出自变量的取值范围)4当路程一定时,速度与时间之间的函数关系是( )A正比例函数 B反比例函数 C一次函数 D二次函数5函数与(k0)在同一坐标系内的图象可能是( )1点A在函数的图像上.则有 .2. 求函数与轴的交点横坐标,即令 ,解方程 ;与y轴的交点纵坐标,即令 ,求y值3. 求一次函数的图像与二次函数的图像的交点,解方程组 .例1如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合设x秒时,三角形与正方形重叠部分的面积为ym2 写出y与x的关系式; 当x=2,3.5时,y分别是多少? 当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴. 例2 如右图,抛物线经过点,与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是等腰三角形,试求点P的坐标.1 反比例函数的图像经过A(,5)点、B(,3),则 , 2如图是一次函数y1kxb和反比例函数y2的图象,观察图象写出y1>y2时,x的取值范围是_3根据右图所示的程序计算变量y的值,若输入自变量x的值为,则输出的结果是_.4.如图,过原点的一条直线与反比例函数y(k<0)的图像分别交于A、B两点,若A点的坐标为(a,b),则B点的坐标为( ) A(a,b) B(b,a) C(-b,-a) D(-a,-b)5. 二次函数yx22x7的函数值是8,那么对应的x的值是( ) A3 B5 C3和5 D3和5 6.下列图中阴影部分的面积与算式的结果相同的是( )7. 如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1) 四点,则该圆圆心的坐标为( )A.(2,-1) B.(2,2) C.(2,1) D.(3,1)三、解答题8. 已知点的坐标为,点的坐标为 写出一个图象经过两点的函数表达式; 指出该函数的两个性质9. 反比例函数y 的图象在第一象限的分支上有一点A(3,4),P为x轴正半轴上的一个动点, (1)求反比例函数解析式. (2)当P在什么位置时,OPA为直角三角形,求出此时P点的坐标.10.如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO将纸片翻折后,点B恰好落在x轴上,记为B,折痕为CE,已知tanOBCBABCEOxy(1)求B点的坐标; (2)求折痕CE所在直线的解析式知识点睛一、二次函数与一次函数的联系一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:方程组有两组不同的解时与有两个交点;方程组只有一组解时与只有一个交点;方程组无解时与没有交点.【例1】 如图,已知二次函数的图像经过三点A,B,C,它的顶点为M,又正比例函数的图像于二次函数相交于两点D、E,且P是线段DE的中点。(1)该二次函数的解析式,并求函数顶点M的坐标;(2)知点E,且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量的取值范围;(3)时,求四边形PCMB的面积的最小值。参考公式:已知两点,则线段DE的中点坐标为二次函数图象的几何变换一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成的形式,确定其顶点,然后做出二次函数的图像,将抛物线平移,使其顶点平移到.具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是 5. 关于点对称 关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式一、二次函数图象的平移变换【例1】 函数的图象可由函数的图象平移得到,那么平移的步骤是:( ) 右移两个单位,下移一个单位 右移两个单位,上移一个单位 左移两个单位,下移一个单位 左移两个单位,上移一个单位【例2】 函数的图象可由函数的图象平移得到,那么平移的步骤是( ) 右移三个单位,下移四个单位 右移三个单位,上移四个单位 左移三个单位,下移四个单位 左移四个单位,上移四个单位【例3】 二次函数的图象如何移动就得到的图象( ) 向左移动个单位,向上移动个单位. 向右移动个单位,向上移动个单位. 向左移动个单位,向下移动个单位. 向右移动个单位,向下移动个单位.【例4】 将函数的图象向右平移个单位,得到函数的图象,则的值为( )ABCD 【例5】 把抛物线的图象先向右平移个单位,再向下平移个单位,所得的图象的解析式是,则_【例6】 把抛物线向左平移个单位,然后向上平移个单位,则平移后抛物线的解析式为ABCD【例7】 将抛物线向下平移个单位,得到的抛物线是()ABCD【例8】 将抛物线向上平移个单位,得到抛物线的解析式是( ) 【例9】 一抛物线向右平移个单位,再向下平移个单位后得抛物线,则平移前抛物线的解析式为_【例10】 如图,中,点的坐标是,以点为顶点的抛物线经过轴上的点, 求点,的坐标 若抛物线向上平移后恰好经过点,求平移后抛物线的解析式【例11】 已知二次函数,求:关于轴对称的二次函数解析式;关于轴对称的二次函数解析式;关于原点对称的二次函数解析式【例12】 函数与的图象关于_对称,也可以认为是函数的图象绕_旋转得到【例13】 在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为A BC D2. 如图,已知中,BC=8,BC上的高,D为BC上一点,交AB于点E,交AC于点F(EF不过A、B),设E到BC的距离为,则的面积关于的函数的图像大致为( )3. 某商场购进一种单价为元的篮球,如果以单价元售出,那么每月可售出 个根据销售经验,售价每提高元,销售量相应减少个 假设销售单价提高元,那么销售每个篮球所获得的利润是_元;这种篮球每月的销售量是_个(用含的代数式表示) 当篮球的售价应定为 元时,每月销售这种篮球的最大利润,此时最大利润是 元.1二次函数通过配方可得, 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 ; 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 2. 每件商品的利润P = ;商品的总利润Q = × .例1 近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40x70(1) 根据图象,求与之间的函数解析式;(2) 设该销售公司一天销售这种型号电缆线的收入为元 试用含x的代数式表示; 试问当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高?最高是多少元?例2 随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图(1)所示;种植花卉的利润与投资量成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元) 分别求出利润与关于投资量的函数关系式; 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 1. 如图所示,在直角梯形ABCD中,AD90°,截取AEBFDGx.已知AB6,CD3,AD4;求四边形CGEF的面积S关于x的函数表达式和x的取值范围.3. 如图,已知矩形OABC的长OA,宽OC1,将AOC沿AC翻折得APC.(1)填空:PCB 度,P点坐标为 ;(2)若P、A两点在抛物线yx2bxc上,求b、c的值,并说明点C在此抛物线上;(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.3一次函数的解析式为: ,一次函数的图象是一条 。根据两点确定一条直线,在求解析式时只需两点就可以了,通常采用列方程组的方法来解决,又叫 。 一次函数y=k(x-a)+b (a,b为常数,k为变量)当k变化时表示的直线也在变化,但这些直线始终过定点( )4一次函数图象增减(升降)变化规律,系数与图象关系。自变量的变化对图象的影响。5反比例函数的解析式为: ,当k>0 时图象过 象限,当K<0时,图象过 象限6二次函数的解析式:一般式 ,顶点式 ,交点式 在顶点式中,顶点为( )对称轴为 。一般式中= 当 时图象与X轴无交点,当 时图象与X轴有一个交点,当 时图象与X轴有两个交点。当a>0时图象开口向 ,当a<0时图象开口向 7图象平移:8.二次函数与一元二次方程的关系: QPRMN(图1)(图2)49yxO9一元二次方程求根公式:10韦达定理: 典型例题与练习:yxDCABOFE(第3题)2已知整数x满足-5x5,y1=x+1,y2=-2x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是 ( ) A.1 B.2 C.24 D.-93. 3如图,一次函数的图象与轴,轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作轴,轴的垂线,垂足为E,F,连接CF,DE有下列四个结论:CEF与DEF的面积相等;AOBFOE;DCECDF; 其中正确的结论是 (把你认为正确结论的序号都填上)yxOCyxOAyxODyxOB4若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是( )yxOAB5. 如图,直线经过,两点,则不等式的解集为 专心-专注-专业