线面角的三种求法(共3页).doc
精选优质文档-倾情为你奉上线面角的三种求法河北 王学会1直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1 ( 如图1 )四面体ABCS中,SA,SB,SC 两两垂直,SBA=45°, SBC=60°, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1) SCSB,SCSA, 图1SC平面SAB 故 SB是斜线BC 在平面SAB上的射影, SBC是直线BC与平面SAB所成的角为60°。(2) 连结SM,CM,则SMAB,又SCAB,AB平面SCM,面ABC面SCM过S作SHCM于H, 则SH平面ABCCH即为 SC 在面ABC内的射影。 SCH 为SC与平面ABC所成的角。 sin SCH=SHSCSC与平面ABC所成的角的正弦值为77(“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)2. 利用公式sin=h其中是斜线与平面所成的角, h是 垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。例2 ( 如图2) 长方体ABCD-A1B1C1D1 , AB=3 ,BC=2, A1A= 4 ,求AB与面 AB1C1D 所成的角。解:设点 B 到AB1C1D的距离为h,VBAB1C1=VABB1C113 SAB1C1·h= 13 SBB1C1·AB,易得h=125 设AB 与 面 A B1C1D 所成的角为,则sin=hAB=45 图2AB与面AB1C1D 所成的角为arcsin 45 3. 利用公式cos=cos1·cos2 (如图3) 若 OA为平面的一条斜线,O为斜足,OB为OA在面内的射影,OC为面内的一条直线,其中为OA与OC所成的角, 图31为OA与OB所成的角,即线面角,2为OB与OC所成的角,那么 cos=cos1·cos2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC所成的角的余弦值。解:AOB=AOC OA 在面OBC 内的射影在BOC 的平分线OD上,则AOD即为OA与面OBC所成的角,可知 DOC=30° ,cosAOC=cosAOD·cosDOC cos60°=cosAOD·cos30° cosAOD= 33 OA 与 面OBC所成的角的余弦值为33。 图4专心-专注-专业